Abstract:
Embodiments described herein relate to systems and methods for scheduling subscriptions in a user equipment (UE) having at least a first receive radio and a second receive radio, including receiving, by the first receive radio, a broadcast activity for a first subscription and receiving, by the second receive radio, a reception activity for a second subscription. A trigger event is detected while the broadcast activity for the first subscription is being received by the first receive radio and the reception activity for the second subscription is being received by the second receive radio. In response to detecting the trigger event, the reception activity for the second subscription is received by the first receive radio and the broadcast activity for the first subscription is received by the second receive radio.
Abstract:
This disclosure provides systems, methods, and apparatus for mobile transmit diversity. In one aspect a method of controlling a transmit power level of a wireless communications apparatus is provided. The method includes adjusting the transmit power level of a transmitter of the wireless communications apparatus to a first transmit power level in response to detecting a de-sense event indicative of interference with a signal received by a receiver of the wireless communications apparatus due to emissions from the transmitter. The method further includes maintaining the transmit power level substantially at the first transmit power level for a first time interval in response to adjusting the transmit power level to the first transmit power level. The method further includes adjusting a transmit power level limit of the transmitter after the time interval at a rate for a second time interval.
Abstract:
Various embodiments include methods for adjusting timing advance values on a mobile communication device that includes receiving, on the mobile communication device, a timing advance adjustment value from a base station and determining whether the timing advance adjustment value exceeds an adjustment threshold. The mobile communication device may ignore the timing advance adjustment value in response to determining that the timing advance adjustment value exceeds the adjustment threshold, and may adjust a timing advance value stored on the mobile communication device by the timing advance adjustment value in response to determining that the timing advance adjustment value does not exceed the adjustment threshold.
Abstract:
Systems, methods, apparatuses, and media are provided for recovery of information from redundancy version packets in systematic encoding environments when a redundancy version packet containing primarily systematic information may be corrupted. A plurality of redundancy version packets may be received at a user equipment device from a transmission device. Each redundancy version packet of the plurality of redundancy version packets may be based on a same group of information bits. A first redundancy version packet of the plurality of redundancy version packets may contain more bits of the same group of information bits than do the other redundancy version packets of the plurality of redundancy version packets. The same group of information bits may be recovered based on one or more second redundancy version packets of the plurality of redundancy version packets but not based on the first redundancy version packet.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating on a radio frequency spectrum band of a first radio access technology (RAT) using a set of antennas. The UE may reconfigure at least one antenna of the set of antennas to perform a first scan on the radio frequency spectrum band of a second RAT. The UE may determine, based on the first scan, whether to reconfigure a remaining portion of the antennas of the set of antennas to perform a second scan on the radio frequency spectrum band of the second RAT.
Abstract:
Systems, methods, apparatuses, and media are provided for recovery of information from redundancy version packets in systematic encoding environments when a redundancy version packet containing primarily systematic information may be corrupted. A plurality of redundancy version packets may be received at a user equipment device from a transmission device. Each redundancy version packet of the plurality of redundancy version packets may be based on a same group of information bits. A first redundancy version packet of the plurality of redundancy version packets may contain more bits of the same group of information bits than do the other redundancy version packets of the plurality of redundancy version packets. The same group of information bits may be recovered based on one or more second redundancy version packets of the plurality of redundancy version packets but not based on the first redundancy version packet.
Abstract:
Various embodiments provide methods, devices, and non-transitory processor-readable storage media for mitigating the risk of delayed connection or call failure during base station handover by preventing single radio long term evolution (SRLTE) communication devices from dropping Mobile Termination (MT) paging messages due to paging channel mismatches (e.g., mismatches between the Walsh codes used for different paging channels).
Abstract:
Various embodiments include methods for reporting quality metrics of a wireless communication device to a network that includes scheduling, on the wireless communication device, a tune-away from a first carrier of a first subscription to a second subscription. Quality metrics of the first carrier before the tune-away begins are calculated and stored as frozen quality metrics. During the tune-away, the wireless communication device sends the stored frozen quality metrics to the network. The stored frozen quality metrics may continue to be sent to the network as long as the duration of the tune-away is shorter than a time threshold. If the duration of the tune-away exceeds the time threshold, the wireless communication device may calculate and send actual quality metrics of the carrier to the network.
Abstract:
Apparatuses and methods for a wireless communication device having a first Subscriber Identity Module (SIM) and a second SIM to manage communication via the first SIM and the second SIM are disclosed. The method can include, but is not limited to, sending a first message including an indication of an extended signaling capability, receiving a second message including an inquiry regarding the extended signaling capability, and sending a third message including extended capability information, responsive to receiving the second message.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to predicting a system loss event and/or proactive system recovery. Aspects of the present disclosure relate to techniques and apparatus for system loss event (e.g., radio link failure event) geo-coding and proactive system recovery. According to certain aspects, a user equipment (UE) may generate and store information about one or more system loss events associated with the UE. The UE may then predict one or more other system loss events associated with the UE based on this information and take action, based on the prediction to continue communication of the UE.