Abstract:
The described apparatus and methods may include a receiver configured to receive a control signal, and a controller configured to regulate power consumption of the receiver during intervals of less than one radio frame based on the control signals. The controller may also be configured to regulate power consumption of a transmitter during intervals of less than one radio frame based on the control signal.
Abstract:
An apparatus includes a low noise amplifier (LNA) multiplexer configured to receive a plurality of radio frequency (RF) signals at a plurality of input terminals and to combine the plurality of RF signals into a combined RF signal that is output at an output terminal. The LNA multiplexer includes a plurality of input signal paths, and each input signal path is coupleable to a respective input terminal of the plurality of input terminals and is configured to receive a respective RF signal of the plurality of RF signals. The apparatus further includes an LNA demultiplexer configured to receive the combined RF signal at an input port coupled to the output terminal and to distribute the combined RF signal to a plurality of output ports, each output port of the plurality of output ports configured to output the combined RF signal to a respective downconverter of a plurality of downconverters.
Abstract:
Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first transmit (TX) filter for a first band, which may be part of a first triplexer or duplexer. The first TX filter filters a first radio frequency (RF) signal prior to transmission via the first antenna. The second antenna interface circuit includes a second TX filter for a second band, which may be part of a second triplexer or duplexer. The second TX filter filters a second RF signal prior to transmission via the second antenna. The first and second RF signals may be transmitted simultaneously on the first and second bands for carrier aggregation.
Abstract:
Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first transmit (TX) filter for a first band, which may be part of a first triplexer or duplexer. The first TX filter filters a first radio frequency (RF) signal prior to transmission via the first antenna. The second antenna interface circuit includes a second TX filter for a second band, which may be part of a second triplexer or duplexer. The second TX filter filters a second RF signal prior to transmission via the second antenna. The first and second RF signals may be transmitted simultaneously on the first and second bands for carrier aggregation.