Abstract:
The described apparatus and methods may include a receiver configured to receive a control signal, and a controller configured to regulate power consumption of the receiver during intervals of less than one radio frame based on the control signals. The controller may also be configured to regulate power consumption of a transmitter during intervals of less than one radio frame based on the control signal.
Abstract:
Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
Abstract:
An apparatus includes a low noise amplifier (LNA) multiplexer configured to receive a plurality of radio frequency (RF) signals at a plurality of input terminals and to combine the plurality of RF signals into a combined RF signal that is output at an output terminal. The LNA multiplexer includes a plurality of input signal paths, and each input signal path is coupleable to a respective input terminal of the plurality of input terminals and is configured to receive a respective RF signal of the plurality of RF signals. The apparatus further includes an LNA demultiplexer configured to receive the combined RF signal at an input port coupled to the output terminal and to distribute the combined RF signal to a plurality of output ports, each output port of the plurality of output ports configured to output the combined RF signal to a respective downconverter of a plurality of downconverters.
Abstract:
Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal. The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
Abstract:
Amplifiers with multiple outputs and separate gain control per output are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) may include first and second amplifier circuits. The first amplifier circuit may receive and amplify an input radio frequency (RF) signal based on a first variable gain and provide a first amplified RF signal. The second amplifier circuit may receive and amplify the input RF signal based on a second variable gain and provide a second amplified RF signal. The input RF signal may include a plurality of transmitted signals being received by the wireless device. The first variable gain may be adjustable independently of the second variable gain. Each variable gain may be set based on the received power level of at least one transmitted signal being received by the wireless device.
Abstract:
In certain aspects, a system includes a first filter, a second filter, a dummy load, and a switching circuit coupled to the first filter, the second filter, and the dummy load, and coupled to a first antenna and a second antenna. In a first mode, the switching circuit couples the first filter and the second filter to the first antenna, and, in a second mode, the switching circuit couples the first filter and the third filter to the first antenna and couples the second filter to the second antenna. In certain aspects, the dummy load includes a third filter.
Abstract:
Amplifiers with multiple outputs and separate gain control per output are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) may include first and second amplifier circuits. The first amplifier circuit may receive and amplify an input radio frequency (RF) signal based on a first variable gain and provide a first amplified RF signal. The second amplifier circuit may receive and amplify the input RF signal based on a second variable gain and provide a second amplified RF signal. The input RF signal may include a plurality of transmitted signals being received by the wireless device. The first variable gain may be adjustable independently of the second variable gain. Each variable gain may be set based on the received power level of at least one transmitted signal being received by the wireless device.
Abstract:
A method for classifying radio frequency front-end (RFFE) devices. The method includes enumerating a radio frequency front-end (RFFE) slave device according to at least one classifier bit within the RFFE slave device. The method also includes adjusting an RFFE control interface of an RFFE master device according to slave device configuration information determined from the at least one classifier bit within the RFFE slave device.
Abstract:
A radio frequency package on package (PoP) circuit is described. The radio frequency package on package (PoP) circuit includes a first radio frequency package. The first radio frequency package includes radio frequency components. The radio frequency package on package (PoP) circuit also includes a second radio frequency package. The second radio frequency package includes radio frequency components. The first radio frequency package and the second radio frequency package are in a vertical configuration. The radio frequency components on the first radio frequency package are designed to reduce the effects of ground inductance.
Abstract:
A radio frequency package on package (PoP) circuit is described. The radio frequency package on package (PoP) circuit includes a first radio frequency package. The first radio frequency package includes radio frequency components. The radio frequency package on package (PoP) circuit also includes a second radio frequency package. The second radio frequency package includes radio frequency components. The first radio frequency package and the second radio frequency package are in a vertical configuration. The radio frequency components on the first radio frequency package are designed to reduce the effects of ground inductance.