Abstract:
A wireless device includes: a first radio and first transceiver configured to transmit and receive according to a first radio access technology; a second radio and second transceiver configured to transmit and receive according to a second radio access technology; a first antenna and a second antenna connected to the first radio and the second radio; a switch; and a control unit configured to control the switch to configure connections of the first and second antennas to the first and second radios. The control unit is configured to control the switch to disconnect the second radio from the second antenna in response to a receiving, by the second radio through the second antenna, a signal that is below a predetermined threshold, and to connect the second radio to the first antenna during a wakeup period of the second radio.
Abstract:
A method for performing mobile receive diversity may include: enabling a first receive chain associated with a first radio access technology (RAT) to receive one or more signals from a second RAT; receiving second RAT signals on a second receive chain; enabling receive diversity on a modem associated with a second receive chain; generating, by a diversity receiver, a receive diversity signal based on the one or more second RAT signals received by the first receive chain during periods of time the first receive chain does not receive a signal from the first RAT; and outputting the generated receive diversity signal to a decoder for the second RAT.
Abstract:
A method for performing mobile receive diversity may include: enabling a first receive chain associated with a first radio access technology (RAT) to receive one or more signals from a second RAT; receiving second RAT signals on a second receive chain; enabling receive diversity on a modem associated with a second receive chain; generating, by a diversity receiver, a receive diversity signal based on the one or more second RAT signals received by the first receive chain during periods of time the first receive chain does not receive a signal from the first RAT; and outputting the generated receive diversity signal to a decoder for the second RAT.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a multi-subscriber identity module (SIM) user equipment (UE) may communicate, using a first SIM, on a plurality of component carriers. The multi-SIM UE may select a first subset of component carriers from the plurality of component carriers based at least in part on a component carrier prioritization. The multi-SIM UE may identify an amount of memory available to a second SIM. The multi-SIM UE may tune away, based at least in part on the amount of memory available to the second SIM, from a second subset of component carriers The first subset of component carriers may be different from the second subset of component carriers. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described in which a user equipment (UE) may use multiple subscriber identification modules (SIMs) in dual-SIM dual-active (DSDA) communications. A DSDA UE may support identification of a set of available radio frequency (RF) resources for communications, where the set of available RF resources include multiple RF components (e.g., transmit/receive antennas), RF baseband resources (e.g., processing resources that support processing and decoding of transmissions), or combinations thereof. The set of available resources may be shared between multiple SIMs, and the UE may identify different resource partitions of the set of available resources, with different resource partitions used to provide concurrent communications of both the first SIM and the second SIM based on parameters of each SIM.
Abstract:
Various embodiments leverage the typical manner in which a RAT selects a supported frequency band listed in its acquisition database and the standard communications with its network indicating the supported frequency bands to avoid potential coexistence events with one or more other RATs. In particular, various embodiments include methods for avoiding band interference between RATs operating on a multi-SIM communication device by identifying the frequency bands available to each of the RATs, comparing the identified frequency bands to determine whether any RAT's frequency bands will interfere with one or more other RAT's frequency bands, and in response to determining that there is a possibility of frequency band interference, removing those interfering frequency bands from that RAT's acquisition database. As a result, during standard communications, that RAT will report to its network that it supports only non-interfering frequency bands.
Abstract:
This disclosure provides systems, methods, and apparatus for mobile transmit diversity. In one aspect, a wireless communication apparatus is provided. The wireless communication apparatus includes a transmit circuit configured to transmit wireless communications via either a first antenna or a second antenna. The wireless communication apparatus further includes a receive circuit configured to receive wireless communications using either the first antenna or the second antenna. The wireless communication apparatus further includes a controller configured to switch the transmit circuit and the receive circuit from transmitting and receiving wireless communications via the first antenna to transmit and receive wireless communications via the second antenna in response to detecting that a first receive power level of the first antenna is less than a second receive power level of the second antenna and a difference between the second receive power level and the first receive power level is greater than a threshold.
Abstract:
Various embodiments provide methods implemented in a mobile communication device (e.g., a multi-RAT communication device) for maintaining at least one separate RGS value for each of a plurality of RATs operating on the mobile communication device. Specifically, a device processor on the mobile communication device (e.g., a crystal oscillator manager) may maintain a separate, up-to-date RGS value for each of the plurality of RATs and may associate each of the plurality of RATs with their respective RGS values. By keeping track of the plurality of RATs' respective RGS values, the device processor may ensure that an appropriate RGS value is used to facilitate each RAT's individual operations, such as acquisition/re-acquisition operations, sleep scheduling calculations, and handover/inter-RAT measurement operations. As a result, various embodiments may improve the performance of each RAT and the overall performance of the mobile communication device.
Abstract:
Methods implemented in a mobile communication device (e.g., a dual-SIM-dual-active or multi-SIM-multi-active communication device) for improving accuracy of radio-frequency (RF) output power measurements include opportunistically scheduling when a power detector takes RF output power measurements of a radio access technology (“RAT”). In various embodiments, a processor of the mobile communication device may ensure that the power detector takes an accurate RF output power measurement of the RAT by identifying an upcoming time window during which the RAT's transmit power is not artificially reduced as a result of performing transmit blanking/zeroing or artificially increased by transmissions originating from one or more other RATs operating on the device, and configuring or scheduling the power detector to take RF output power measurements of the RAT during that upcoming time window. A priority of the measured RAT may be increased in response to repeated delays in obtaining an RF output power measurement.
Abstract:
Aspects of the present disclosure relate to a user equipment (UE) and a method of wireless communication using the UE that includes a first transceiver and a second transceiver. The method includes determining that the first transceiver is scheduled to communicate using a first transmission simultaneous to the second transceiver being scheduled to communicate using a second transmission, and altering an operation of at least one of the first and second transceivers to mitigate battery voltage droop due to simultaneous transmissions of the transceivers. Other aspects, embodiments, and features are also claimed and described.