Abstract:
Aspects of the disclosure relate to techniques for mitigating the decoding errors observed at the receiver as a result of puncturing symbols between consecutive subframes having the same transmission direction. To reduce the decoding errors, a plurality of transmission options, each including a number of resource blocks and a modulation and coding scheme (MCS), may be identified. In addition, each transmission option may be associated with one or more puncturing patterns that hinder decoding of a codeword at the receiver. The base station or user equipment (UE) may then select or modify at least one aspect of a scheduling decision involving the communication of the codeword in a given subframe of at least two consecutive subframes to minimize decoding errors. For example, a selected puncturing pattern or a transport block size associated with a selected transmission option may be modified.
Abstract:
There is a need to support narrowband TDD frame structure for narrowband communications. The present disclosure provides a solution by supporting one or more narrowband TDD frame structure(s) for narrowband communications. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. In one aspect, the apparatus may receive information associated with a narrowband TDD frame structure. The apparatus may also transmit an uplink transmission a predetermined number of times using a first scrambling sequence. In one aspect, the first scrambling sequence may be determined using a first number of least significant bits (LSBs) associated with a first radio frame. In another aspect, the first number of LSBs may be larger than a second number of LSBs used in a second scrambling sequence associated with a narrowband frequency-division duplex (FDD) uplink transmission.
Abstract:
There is a need to support narrowband TDD frame structure for narrowband communications. The present disclosure provides a solution by supporting one or more narrowband TDD frame structure(s) for narrowband communications. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. In a further aspect, the apparatus may receive information associated with a narrowband TDD frame structure having a first contiguous uplink transmission duration. The apparatus may transmit a first portion of an uplink transmission comprising a first number of slots in the first contiguous uplink transmission duration. In certain aspects, the uplink transmission may have a duration longer than the first contiguous uplink transmission duration.
Abstract:
In wireless communication systems, a determination may be made whether to hand off a user equipment (UE) based on whether the UE encounters time varying interference, such as UE to UE interference. The time varying interference may be present only in a specific set of time/frequency resources or subframes. Measurement reporting may be restricted to time/frequency resources which do not experience the time varying interference.
Abstract:
Certain aspects of the present disclosure relate to techniques for reporting Channel Quality Indicator (CQI). In certain aspects, a User Equipment (UE) may schedule switch from at least a first set of zero or more antennas used by the UE, to at least one second set of zero or more antennas, wherein the first and second sets differ by at least one antenna. The UE may determine a Channel Quality Indicator (CQI) to be reported from the UE for use at a base station in a subsequent CQI subframe set, based at least on the scheduled switch. The UE may thereafter transmit the CQI to the base station.
Abstract:
A method of wireless communication includes determining a set of subframes with a reduced likelihood of being received as uplink transmissions of a first user equipment (UE). The method also includes scheduling uplink transmissions of the first UE by scheduling uplink control information (UCI) on subframes other than the determined set of subframes.
Abstract:
Systems and methodologies are described that facilitate improved resource partitioning and interference management in a wireless communication system. Techniques are described herein for the transmission and use of various types of signaling, such as Access Request commands, Reverse Link Special Resource Utilization Message (R-SRUM) signaling, Forward Link Special Resource Utilization Message (F-SRUM) signaling, and the like, for managing interference associated with range extension, restricted association networks, and other jamming scenarios. As described herein, downlink resource coordination and interference management are accomplished through the use of Access Request or R-SRUM signaling conducted in a unicast or broadcast fashion, and uplink resource coordination and interference management are accomplished through the use of F-SRUM signaling. As further described herein, a clean communication channel such as a Low Reuse Preamble (LRP) channel can be utilized for interference management signaling and/or leveraged for determining timing of various signaling messages.
Abstract:
Wireless communications systems and methods related user multiplexing with discrete Fourier transform (DFT) precoded frequency interlaces are provided. A first wireless communication device identifies a first block-spreading code from a set of block-spreading codes associated with user multiplexing. The first wireless communication device communicates, with a second wireless communication device using a frequency interlace in a frequency spectrum, a first communication signal including a first block of information symbols spread across a set of resource blocks (RBs) within the frequency interlace based on the first block-spreading code. The first communication signal is generated by block-spreading the first block of information symbols based on the first block-spreading code to produce a first block of spread information symbols, performing a DFT on the first block of spread information symbols, and mapping the first block of spread information symbols to the set of RBs.
Abstract:
Wireless communications systems and methods related to downlink control channel communications in a wireless communication network are provided. A first wireless communication device communicates, with a second wireless communication device, a configuration indicating a first group of one or more search spaces and a second group of one or more search spaces, where at least one of the first group or the second group includes at least one search space not included in an other of the first group or the second group. The first wireless communication device communicates, with the second wireless communication device, a first downlink control information (DCI) message in a first search space of the first group of one or more search spaces. The first wireless communication device communicates, with the second wireless communication device, a second DCI message in a second search space of the second group of one or more search spaces.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and a base station may communicate in an unlicensed spectrum (e.g., a shared radio frequency spectrum band). As such, the UE may determine a codebook size for transmitting hybrid access request (HARQ) acknowledgement (ACK) feedback with respect to the unlicensed spectrum. Accordingly, the UE may base the HARQ ACK codebook size on a number of HARQ processes with which the UE has been configured. Additionally or alternatively, the UE may base the HARQ ACK codebook size on a number and/or duration of downlink channel monitoring occasions indicated by the base station. In some cases, the UE may base the HARQ ACK codebook size on a combination of the techniques described herein.