Abstract:
A wireless device that operates in accordance with the IEEE 802.11 standard receives the preamble of a packet with the highest number of receive chains enabled, thereby obtaining the highest gain, detection sensitivity and range. The wireless device determines a signal-to-noise ratio (SNR) in response to two different short training fields (STFs) in the preamble. The wireless device also determines a modulation and coding scheme (MCS) and a number of spatial streams (Nss) used to transmit the received packet in response to a signal field of the preamble. The wireless device uses these determined parameters to identify a minimum number of the receive chains required to reliably receive the packet. The wireless device uses only the identified minimum number of receive chains to perform channel estimation and receive the data portion of the packet.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for implementing conditional inheritance in a management frame for two or more basic service sets (BSSs). In one aspect, an apparatus may be configurable to provide functions of a first virtual access point (VAP) corresponding to a first BSS and a second VAP corresponding to a second BSS. The apparatus may determine a first BSS identifier (BSSID) profile for the second VAP by customizing one or more management elements of management information of the first VAP. The apparatus may configure a first non-inheritance element of the first BSSID profile associated with the second VAP to indicate usage of at least one management element of the management information by the second BSS associated with the second VAP is disabled. The apparatus may generate a management frame that comprises at least the first BSSID profile for transmission.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for analyzing management frames for multiple basic service sets (BSSs). In one aspect, a wireless node may obtain a first management frame from a wireless local area network (WLAN) apparatus, the WLAN apparatus operating multiple virtual access points (VAPs) respectively corresponding to multiple BSSs. The wireless node may determine whether the first management frame includes a BSS profile of a BSS associated with the wireless node based, at least in part, on an arrangement of a plurality of BSS profiles within one or more management frames. The wireless node may determine to further process the first management frame based, at least in part, on a determination that the first management frame includes the BSS profile of the BSS associated with the wireless node.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for implementing conditional inheritance in a management frame for two or more basic service sets (BSSs). In one aspect, an apparatus may be configurable to provide functions of a first virtual access point (VAP) corresponding to a first BSS and a second VAP corresponding to a second BSS. The apparatus may determine a first BSS identifier (BSSID) profile for the second VAP by customizing one or more management elements of management information of the first VAP. The apparatus may configure a first non-inheritance element of the first BSSID profile associated with the second VAP to indicate usage of at least one management element of the management information by the second BSS associated with the second VAP is disabled. The apparatus may generate a management frame that comprises at least the first BSSID profile for transmission.
Abstract:
Methods, systems, and devices for wireless communication are described. An access point (AP) may communicate with a plurality of stations in a basic service set (BSS) according to a target wakeup time (TWT) slot duration. The AP may identify one or more congestion or interference factors for the BSS. In some cases, the AP may identify a congestion score based at least in part on at least one of the one or more congestion factors from one or more stations that can be part of its own BSS, and an interference score based at least in part on at least one of the one or more interference factors form one or more stations that are not part of AP's BSS. In some cases, the AP may modify the TWT slot duration based at least in part on the congestion score and the interference score.
Abstract:
Methods, systems, and devices are described for wireless communications. A device may utilize enhanced roaming techniques to identify a candidate channel for roaming. In one example, a device determines whether a candidate channel is congested by calculating a congestion metric associated with traffic over the shared channel. In some examples, the congestion metric is calculated based at least in part on an amount of energy measured over the candidate. For instance, the calculated congestion metric can be an instantaneous congestion level measured during a CCA. The device may then determine whether to roam to the candidate channel based at least in part on the calculated congestion metric.
Abstract:
Beacon-poll frames are transmitted from a station (STA) to a wireless AP in an opportunistic manner. In response to receiving a beacon-poll frame, the wireless AP transmits a unicast beacon frame to the STA, thereby eliminating the need for the STA to periodically wake up to receive broadcast beacon frames from the AP. The wireless AP may transmit the unicast beacon frame at a higher speed than a conventional broadcast beacon frame. As a result, the time that the STA must be awake to receive the unicast beacon frame is significantly less than the time that the STA must be awake to receive a conventional broadcast beacon frame, thereby resulting in significant power savings within the STA. The wireless AP may aggregate downlink (DL) data packets to be transmitted to the STA with the unicast beacon frame, resulting in further power savings within the STA.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating on a radio frequency spectrum band of a first radio access technology (RAT) using a set of antennas. The UE may reconfigure at least one antenna of the set of antennas to perform a first scan on the radio frequency spectrum band of a second RAT. The UE may determine, based on the first scan, whether to reconfigure a remaining portion of the antennas of the set of antennas to perform a second scan on the radio frequency spectrum band of the second RAT.
Abstract:
Methods, systems, and apparatuses are described for adaptive dwell time for scan procedures. An access terminal (AT) may identify a scan period associated with performing a scan procedure on a first channel. The AT may analyze a channel congestion metric during the scan period and determine based, at least in part, on the channel congestion metric whether to exit the first channel. The AT may provide a probe request for transmission on a second channel during a remaining portion of the scan period based on the determination to exit the first channel.
Abstract:
Methods, systems, and devices are described for wireless communication at a wireless communications device. The device may use several antennas to receive a signal, one of which may be shared between two radios. During signal reception, a radio may detect when the shared antenna is abruptly taken over by the other radio. The radio may detect the loss of the antenna by measuring an impedance mismatch. Alternatively, the radio may reference an antenna switch control that is used to facilitate the switch. After detection, the radio may recover from the antenna loss by adjusting signal processing. For example, the radio may modify a maximal ratio combining (MRC) operation. In certain examples, the device may disregard the signal version from the shared antenna in the computation of MRC weights. In some cases, the device may interrupt an MRC weight computation and use MRC weights from a previous calculation.