Abstract:
Systems and methods for managing positioning assistance data for large regions are described herein. An example of a method for retrieving positioning assistance data at a mobile device as described herein includes identifying a master region in which the mobile device is located and sub-region definitions associated with the master region, where the sub-region definitions are indicative of area occupied by the sub-regions within the master region; obtaining a first estimated position of the mobile device within the master region; defining a projected area centered at the first estimated position; and obtaining first assistance data corresponding to at least one sub-region that overlaps the projected area.
Abstract:
A method for providing tiered indoor positioning service includes: receiving a request for assistance data from a mobile device; receiving expected quality of service information from the mobile device; generating an adaptive assistance data file comprising heat map data based at least in part on the received expected quality of service information; and transmitting the adaptive assistance data file to the mobile device.
Abstract:
Techniques are provided, which may be implemented via various methods, apparatuses, and/or articles of manufacture. For example, an electronic device may obtain an estimated location of a mobile device, determine a quality of a geometric distribution of transmitting devices capable of transmitting wireless signals to the mobile device at the estimated location, and assign an uncertainty to the estimated location. In certain implementations, an electronic device may further determine an adapted transmission setting for a transmitting device and transmit a corresponding message to the transmitting device. In certain implementations, an electronic device may identify adapted assistance data for the mobile device and transmit a corresponding message to one or more other electronic devices.
Abstract:
Methods, apparatuses and articles of manufacture are provided which may be implemented, at least in part, in a mobile device and used to affect one or more motion models and/or the like based, at least in part, on one or more determined range rates for one or more wireless signals acquired from one or more terrestrial transmitters. Here, for example, a range rate may be determined based, at least in part, on a measured phase value and/or a measured Doppler value.
Abstract:
Methods and apparatuses of providing positioning assistance data are disclosed. According to aspects of the present disclosure, a venue is partitioned into a plurality of tiles, with each tile represents an area of the venue. Measurements from each tile with respect to one or more access points in the venue may be represented as one or more images. The one or more images are then processed to generate a compressed positioning assistance data of the venue. The compressed positioning assistance data may then be provided to a mobile device. Position of a mobile device may be determined using the compressed positioning assistance data of the venue.
Abstract:
Systems and methods are disclosed for determining the floors on which APs are located for WiFi-based indoor positioning systems. A data collection phase is followed by a data analysis phase. During data collection, measurement data to observed APs may be collected from various locations on different floors. The measurements data may include received signal strength indication (RSSI), optional round-trip-time (RTT) data to the APs, and floor information of the measurement locations. Measurement data may also be collected from crowd sourced data without floor information of the measurement locations. In data analysis, the collected measurement data are analyzed using various algorithms to determine if APs belong to the same floor and to assign APs on the same floor to the same cluster. APs on different floors may thus be assigned to different clusters. If the floor information of the measurement locations is known, each cluster may be assigned a floor number.
Abstract:
Systems, apparatus and methods for determining a cyclic shift delay (CSD) mode from a plurality of CSD modes is disclosed. A received OFDM signal is converted to a channel impulse response (CIR) signal in the time domain and/or a channel frequency response (CFR) signal in the frequency domain. Matched filters and a comparator are used to determine a most likely current CSD mode. Alternatively, a classifier is used with a number of inputs including outputs from two or more matched filters and one or more outputs from a feature extractor. The feature extractor extracts features in the time domain from the CIR signal and/or in the frequency domain from the CFR signal useful in distinguishing various CSD modes.
Abstract:
Methods, apparatuses, and devices are disclosed to estimate a position of a mobile device using, for example, beacon signals transmitted using virtual access points utilizing a single, physical transceiver. Determination that beacon signals emanate from a single, physical transceiver may be based, at least in part, on a similarity among acquired beacon signals conveying identifiers, such as media access control identification (MAC ID) addresses and/or basic service set identifiers (BSSIDs), and on measurement of beacon signal characteristics, such as received signal strength at a mobile device and/or round trip time between the mobile device and the transceiver.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented in one or more electronic devices supporting mobile device positioning within an indoor environment. Tiered positioning assistance data (tiered-PAD) corresponding to an indoor environment may be generated and/or distributed. Mobile device positioning and/or navigation capabilities may be based, at least in part, on tiered-PAD corresponding to the indoor environment. Tiered-PAD may be provided to a plurality of mobile devices. A given mobile device may, for example, select applicable portion(s) of tiered-PAD to affect one or more positioning functions and/or the like which may be performed, at least in part, by the mobile device.
Abstract:
A method for requesting assistance data includes, at a mobile device, determining an expected quality of service information, transmitting a request for assistance data, transmitting the expected quality of service information, and receiving an assistance data file comprising heat map information, wherein the heat map information includes a heat map grid resolution and a suitable quantization precision level for heat map values as determined, at least in part, based on the expected quality of service information.