Abstract:
This disclosure provides methods and apparatus, including computer-readable media, for wireless power transfer and particularly active cancellation of undesirable electric or magnetic field emissions from a wireless power transmitter. In one aspect, the disclosure provides for an apparatus including a sensor, controller, and emitter, wherein the sensor is used to sense the electric or magnetic field emissions from a transmit antenna, the controller configured to determine the undesirable components of the field, and the emitter to generate a field to destructively interfere with the undesirable components.
Abstract:
Exemplary embodiments are directed to control of field distribution of a wireless power transmitter. A transmitter may include a transmit antenna configured to generate a field. The transmitter may further include least one parasitic antenna proximate the transmit antenna and configured to modify a distribution of the generated field.
Abstract:
A system and method for charging a chargeable device is provided. The system can include a wireless charger including a wireless power antenna and a wireless power transmitter coupled to the wireless power antenna and configured to generate a wireless charging field in at least one charging region. The wireless charging field includes a plurality of power signals. The wireless charger further includes a communication antenna and a transceiver coupled to the communication antenna and configured to communicate with the chargeable device via the communication antenna. The wireless charger further includes a controller configured to facilitate avoidance of cross connection of the chargeable device with the wireless charger and at least one other wireless charger in which the chargeable device receives power from the wireless power transmitter of the wireless charger while communicating with at least one other wireless charger. The system can include a chargeable device including a controller configured to generate a load pulse configured to be received by the wireless charger.
Abstract:
In one aspect, a wireless charger may include a wireless power antenna, a wireless power transmitter coupled to the wireless power antenna and configured to generate a wireless charging field in a charging region, a first communication antenna, a first transceiver coupled to the communication antenna and configured to communicate with the chargeable device via the communication antenna, a first signal strength detector configured to determine a signal strength of a first signal received by the transceiver, and a controller configured to determine whether the chargeable device is within the charging region based at least in part on the signal strength of the first signal.
Abstract:
In one aspect, an apparatus for charging a device includes a charger and a controller. The charger includes a capacitance and has a charger input and a charger output. The charger input receives an AC input voltage waveform, and the charger output outputs an output voltage waveform and an output current waveform. The controller determines whether an amplitude of the output voltage waveform is within a voltage range. In response to determining that the amplitude of the output voltage waveform is within the voltage range, the controller directs an amplitude of the output current waveform to be substantially proportional to an amplitude of the AC input voltage waveform. In response to determining that the amplitude of the output voltage waveform is not within the voltage range, the controller increases the capacitance of the charger to adjust the amplitude of the output voltage waveform to be within the voltage range.
Abstract:
Exemplary embodiments are directed to portable wireless charging. A portable charging system may comprise at least one antenna positioned within a portable enclosure. The at least one antenna may be configured to receive power from a power source and wirelessly transmit power to a receive antenna coupled to a chargeable device positioned within a near-field of the at least one antenna.
Abstract:
This disclosure provides systems, methods and apparatus for tuning a transmit coil for operation in a plurality of frequency bands. In one aspect, a method of wireless power transmission is provided. The method includes exciting a first part of a wireless power transmission system, via a wireless power transmitter. The method further includes detecting, in the presence of a non-charging object, a first change in a first parameter. The first parameter is indicative of a coupling between the non-charging object and the first part. The method further includes varying a characteristic of the wireless power transmission based on said first change.
Abstract:
Exemplary embodiments are directed to wireless power. A wireless power receiver includes a receive antenna for coupling with near field radiation in a coupling-mode region generated by a transmit antenna operating at a resonant frequency. The receive antenna generates an RF signal when coupled to the near filed radiation and a rectifier converts the RF signal to a DC input signal. A direct current (DC)-to-DC converter coupled to the DC input signal generates a DC output signal. A pulse modulator generate a pulse-width modulation signal to the DC-to-DC converter to adjust a DC impedance of the wireless power receiver by modifying a duty cycle of the pulse-width modulation signal responsive to at least one of a voltage of the DC input signal, a current of the DC input signal, a voltage of the DC output signal, and a current of the DC output signal.
Abstract:
This disclosure provides systems, methods and apparatus for tuning a transmit coil for operation in a plurality of frequency bands. In one aspect, a method of wireless power transmission is provided. The method includes exciting a first part of a wireless power transmission system, via a wireless power transmitter. The method further includes detecting, in the presence of a non-charging object, a first change in a first parameter. The first parameter is indicative of a coupling between the non-charging object and the first part. The method further includes varying a characteristic of the wireless power transmission based on said first change.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A transmitting device or a receiving device for use in a wireless transfer system may be equipment or a household appliance. The transmitting device includes a transmit antenna to wirelessly transfer power to a receive antenna by generating a near field radiation within a coupling-mode region. An amplifier applies an RF signal to the transmit antenna. A presence detector detects a presence of a receiver device within the coupling-mode region. A controller adjusts a power output of the amplifier responsive to the presence of a receiver device. The presence detector may also detect a human presence. The power output may be adjusted at or below the regulatory level when the presence signal indicates human presence and above a regulatory level when the presence signal indicates human absence.