Abstract:
A method includes determining, at a first transmitter, whether to permit reuse of a first transmit opportunity (TXOP) associated with a message. The method further includes sending a portion of the message from the first transmitter to a first receiver. The portion of the message indicates whether reuse, by a reuse transmitter, of the first TXOP is permitted. When reuse of the first TXOP is permitted, the reuse transmitter is permitted to send a second message while the first transmitter sends a second portion of the message to the first receiver during the first TXOP.
Abstract:
Methods, systems, and devices are described for wireless communications. More particularly, the described features relate to techniques for adjusting a modulation and coding scheme (MCS) to account for different airtime utilizations (available airtime actually utilized by a device for transmissions) resulting from different MCSs. In one example, a method for wireless communication may involve: determining a media access control (MAC) efficiency for a station of a plurality of stations based at least in part on a real-time multi-user (MU) physical protocol data unit (PPDU) length, a real-time physical layer service data unit (PSDU) length of each of the plurality of stations, and a modulation and coding scheme (MCS) of the station; adjusting a goodput estimate of the station using the MAC efficiency; and, adjusting the MCS of the station using the adjusted goodput estimate.
Abstract:
A waveform communicated from a first station to a second station over a shared medium may include at least the first symbol comprising a first set of frequency components at predetermined carrier frequencies modulated with preamble information and a second set of frequency components at predetermined carrier frequencies modulated with frame control information. The first symbol may comprise a single symbol delimiter.
Abstract:
A network device can be configured to dynamically adapt its current primary receiver coupling to channel conditions. For each of a plurality of transmitting network devices, the network device can determine a potential primary receiver coupling of the first network device for receiving communications from the transmitting network device based, at least in part, on a performance measurement associated with each of the plurality of communication channels between the network device and the transmitting device. The network device can select its current primary receiver coupling based, at least in part, on the potential primary receiver couplings determined for the plurality of transmitting network devices. In addition, the network device can also determine how to communicate with a receiving network device based, at least in part, on a preferred communication channel between the two network devices and a current primary receiver coupling of the receiving network device.
Abstract:
A first client may establish a power charging association with one of a plurality of service agents over a network. The first client transmits a first signal via a first attachment point of a powerline network, the first signal associated with requesting the power charging association. The first client broadcasts a sounding message via the first attachment point after transmitting the first signal, wherein the sounding message is receivable by one or more service agents including at least a first service agent of the powerline network. The first service agent received the sounding message with a lowest attenuation of the one or more service agents that received the sounding message. The power charging association is established between the first client and the first service agent.
Abstract:
A Response Interframe Space (RIFS) time period may be adapted in a communication system. The RIFS time period may be based, at least in part, on channel conditions (e.g., data rate) between a first device and a second device. The RIFS may be optimized in consideration of channel conditions for a particular communications channel and/or characteristics of a particular physical layer transmission. In one embodiment, the RIFS may be dependent on characteristics of a final modulation symbol in a physical layer transmission. The final modulation symbol may include more than one PHY blocks (PBs) or portions of PBs. The RIFS may depend on a number of PBs that end in the final modulation symbol.
Abstract:
A method of operating in a network in which a plurality of stations communicate over a shared medium, comprising providing a physical layer (e.g., PHY) for handling physical communication over the shared medium; providing a high level layer (e.g., PAL) that receives data from the station and supplies high level data units (e.g., MSDUs) for transmission over the medium; providing a MAC layer that receives the high level data units from the high level layer and supplies low level data units (e.g., MPDUs) to the physical layer; at the MAC layer, encapsulating content from a plurality of the high level data units; dividing the encapsulated content into a plurality of pieces (e.g., segments) with each piece capable of being independently retransmitted; and supplying low level data units containing one or more of the plurality of pieces.
Abstract:
A method includes sending, from a first transmitter to a first receiver, a request to send (RTS) message associated with a first transmit opportunity (TXOP). The RTS message requests the first receiver to indicate whether reuse of the first TXOP is permitted. The method further includes receiving, at the first transmitter from the first receiver, a clear to send (CTS) message responsive to the RTS message.
Abstract:
An advanced gateway for multiple broadband access can include a plurality of broadband network interfaces. The advanced gateway can route data from a local network interface to a broadband network interface when a performance attribute of the broadband network meets or exceeds a data characteristic of data conveyed through the local network interface. In another embodiment, a first advanced gateway can send a portion of data received through the local network interface to a second advanced gateway when performance attributes associated with the first advanced gateway cannot meet or exceed a data characteristic of data received through a local network interface of the first advanced gateway. In yet another embodiment, an advanced gateway can receive commands from service providers, determine a recipient device for the command and forward the command to the recipient device through a device interface coupled to the recipient device.
Abstract:
A method of operating in a network in which a plurality of stations communicate over a shared medium, comprising providing a physical layer (e.g., PHY) for handling physical communication over the shared medium; providing a high level layer (e.g., PAL) that receives data from the station and supplies high level data units (e.g., MSDUs) for transmission over the medium; providing a MAC layer that receives the high level data units from the high level layer and supplies low level data units (e.g., MPDUs) to the physical layer; at the MAC layer, encapsulating content from a plurality of the high level data units; dividing the encapsulated content into a plurality of pieces (e.g., segments) with each piece capable of being independently retransmitted; and supplying low level data units containing one or more of the plurality of pieces.