Abstract:
A single-piece component for a magnetic actuator, in particular for fuel injection, including an internal pole, a magnetic sleeve, and a non-magnetic separating sleeve, the internal pole, the magnetic sleeve and the separating sleeve being integrated into the single-piece component. A method for manufacturing a single-piece component for an magnetic actuator with the aid of a two-component powder injection molding method.
Abstract:
A device is described for injecting fuel, which includes a valve body, an outwardly opening valve needle, which is disposed in the valve body in a pressure chamber filled with fuel, to which pressurized fuel is supplied; a restoring element, which returns the valve needle to an original position; an electromagnetic actuator, which is disposed in an actuator chamber for actuating the valve needle; and a diaphragm, which is disposed in the actuator chamber and subdivides the actuator chamber into a first, fuel-filled region and a second, fuel-free region in fluid-tight manner, and which subdivides the valve needle into an injection-side portion and an actuator-side portion, the injection-side portion of the valve needle including a pressure-compensation plunger, which separates the pressure chamber from the first, fuel-filled region of the actuator chamber, the actuator being disposed in the second, fuel-free region.
Abstract:
A piston accumulator, having a pressure vessel; a cylinder, which is situated within the pressure vessel; an interspace formed between the pressure vessel and the cylinder; and a separating piston, which is provided movably in the cylinder; in which a hydraulic fluid acts upon on a first side of a separating piston, and a gas acts upon a second side of the separating piston; and in which the gas is in fluidic connection to the interspace and the hydraulic fluid is in fluidic connection to a connection on the cylinder.
Abstract:
The invention relates to a hydraulic accumulator device in the form of a membrane accumulator, comprising a membrane (16) which separates a pneumatic volume from a hydraulic volume. In order to improve said hydraulic accumulator device with respect to the degree of efficiency and/or manufacturing costs, the membrane (16) is tensioned between two holding bodies (4,5) which respectively comprise several recesses (11-14) and between which the membrane (16) is tensioned in order to produce several hydropneumatic membrane accumulators.
Abstract:
A piston accumulator, having a pressure vessel; a cylinder, which is situated within the pressure vessel; an interspace formed between the pressure vessel and the cylinder; and a separating piston, which is provided movably in the cylinder; in which a hydraulic fluid acts upon on a first side of a separating piston, and a gas acts upon a second side of the separating piston; and in which the gas is in fluidic connection to the interspace and the hydraulic fluid is in fluidic connection to a connection on the cylinder.
Abstract:
A device is described for injecting fuel, which includes a valve body, an outwardly opening valve needle, which is disposed in the valve body in a pressure chamber filled with fuel, to which pressurized fuel is supplied; a restoring element, which returns the valve needle to an original position; an electromagnetic actuator, which is disposed in an actuator chamber for actuating the valve needle; and a diaphragm, which is disposed in the actuator chamber and subdivides the actuator chamber into a first, fuel-filled region and a second, fuel-free region in fluid-tight manner, and which subdivides the valve needle into an injection-side portion and an actuator-side portion, the injection-side portion of the valve needle including a pressure-compensation plunger, which separates the pressure chamber from the first, fuel-filled region of the actuator chamber, the actuator being disposed in the second, fuel-free region.
Abstract:
An impulse turbocharger for an internal combustion engine. The impulse turbocharger is adapted to be used for controlling the air flow of an air supply conduit on the intake side of an internal combustion engine. The impulse turbocharger has a rotary valve which is connected by an elastic coupling to a rotary actuator.
Abstract:
An impulse turbocharger for an internal combustion engine. The impulse turbocharger is adapted to be used for controlling the air flow of an air supply conduit on the intake side of an internal combustion engine. The impulse turbocharger has a rotary valve which is connected by an elastic coupling to a rotary actuator.