Abstract:
The trocar system includes a cannula insertable through a body wall using an obturator having a distal tip. A traction tread disposed interiorly of the obturator inverts at the distal tip and extends proximally along the outer surface of the obturator or cannula. At the distal tip the tread can facilitate parting rather than cutting the tissue. Along the outer surface, the tread can engage the tissue to pull it proximally along the advancing obturator. This produces counter forces which can result in a net proximal force facilitating distention of the abdominal wall and separation of the abdominal wall from internal organs. The traction tread can be axially and/or radially continuous. An associated method of operation includes the steps of contacting the body wall with the traction tread at the distal tip, and engaging the body wall with the traction tread along wall portions facing the outer surface.
Abstract:
A surgical cutting instrument is disclosed for percutaneously debulking tissue through an access sheath commonly used in minimally invasive laparoscopic or endoscopic surgical procedures. The cutting instrument includes a inner rotary member tube having a cutting edge at the distal end thereof for cutting and slicing tissue. The outside surface of the rotary inner cutting member tube and outer sheath annularly close about the distal ends thereof for preventing perforation of the surgical tissue bag in which the tissue is contained. The inner cutting member tube includes a hollow passageway for suctioning and aspirating tissue and fluid through the tube and into a collection chamber or out through a vacuum or suction line attached thereto. Vacuum or suction control ports are included at the proximal end of the inner cutting member tube and stationary sheath for also controlling the amount of vacuum or suction applied to the tissue. The surgical cutting instrument includes a control handle for grasping by the physician. A collection chamber is connected to a coupler connected to the stationary sheath for collecting tissue therein. The inner cutting member tube extends through the collection chamber to a drive motor or to a remotely positioned rotary drive mechanism. A vacuum line is attached to the collection chamber for drawing tissue and fluid through the inner cutting member tube and into the collection chamber.
Abstract:
The invention primarily is directed to a medical tubing adapted for insertion into a body tissue or cavity and method of manufacturing different variations of the tubing along a length of the tubing. The tubing comprises a plurality of individual, discrete, generally ring-shaped elements arranged in series and fused or bonded together forming a continuous tubular structure. The ring-shaped elements may include a combination of flexible and rigid ring-shaped elements assembled along different portions or sections of the tubular structure. In another aspect of the invention, the medical tubing may further comprise a secondary lumen and a pull wire to control the tubular structure. In another aspect of the invention, the ring-shaped elements may vary in diameter and/or composition in different portions or sections of the tubular structure.
Abstract:
An access system comprises an access device. The access device is adapted to be disposed within an opening in a body wall. The access device has an external flange adapted to be disposed external to the body wall and an internal flange adapted to be disposed internal to the body wall. Holes extend through the access device between an external surface and an internal surface of the access device. The holes span the thickness of the body wall between a location external to the body wall and a location internal to the body wall. The access device is formed of an elastomeric material adapted to conform to surfaces of instruments inserted through the holes to form instrument seals along at least a portion of a length spanning the thickness of the body wall. The elastomeric material is compressible and adapted to form a seal with the body wall.
Abstract:
A surgical wound retractor is adapted to dilate a wound stretchable to a desired diameter, the retractor includes a first ring having a diameter greater than that desired for the wound and being adapted for disposition interiorly of the wound. A second ring has a diameter greater than that desired for the wound and is adapted for disposition exteriorly of the wound. A plurality of retraction elements are disposed in a generally cylindrical relationship to each other, between the first ring and the second ring. These elements extend through the wound to exert a radial retraction force on the wound which is dependent on the distance separating the first ring and the second ring. Retraction elements, both distensible and non-distensible are contemplated with appropriate attachment means at the rings to provide for variations in the retraction force. With a suitable retraction sleeve, a third ring can be provided to form a circumferential retainer to vary the retraction force. Rings can also be made inflatable or self-expanding to vary the retraction force. An associated method includes the step of rolling the second ring circumferentially of the third ring to form the circumferential retainer.
Abstract:
A device comprises an access port adapted to permit access of at least one surgical instrument into a patient. The access port comprises a proximal portion, a distal portion, and an intermediate portion monolithically formed of a flexible material. At least one opening extends through the access port. The proximal portion comprises a proximal flange. The distal portion comprises a distal flange. The intermediate portion comprises an outer surface and at least one inner surface. The access port is adapted to form a perimeter seal when the proximal flange is disposed exteriorly and the distal flange is disposed interiorly. The access port is adapted to form a seal with the at least one surgical instrument positioned through the access port. The intermediate portion conforms to the surface of the surgical instrument positioned through the at least one opening and forms the seal between the inner surface and the surgical instrument.
Abstract:
An access system comprises an access device. The access device is adapted to be disposed within an opening in a body wall. The access device has an external flange adapted to be disposed external to the body wall and an internal flange adapted to be disposed internal to the body wall. Holes extend through the access device between an external surface and an internal surface of the access device. The holes span the thickness of the body wall between a location external to the body wall and a location internal to the body wall. The access device is formed of an elastomeric material adapted to conform to surfaces of instruments inserted through the holes to form instrument seals along at least a portion of a length spanning the thickness of the body wall. The elastomeric material is compressible and adapted to form a seal with the body wall.
Abstract:
A surgical access device is adapted for performing laparoscopic surgical procedures with at least one instrument passing through the surgical access device and through an incision in the abdominal wall of a patient with the abdominal cavity pressurized with an insufflation gas. The surgical access device is adapted to provide instrument access to the abdominal cavity for surgical procedures while generally maintaining insufflation pressure in the abdominal cavity. The surgical access device comprises an access seal. The access seal comprises a material formed of a mixture comprising a triblock copolymer and an oil. The access seal is adapted to be disposed relative to the abdominal wall in an operative position. The material of the access seal is adapted to form a seal to generally maintain insufflation pressure within the abdominal cavity. At least one opening is formed through the material of the access seal between a proximal portion and a distal portion of the access seal. The at least one opening when operatively disposed is in communication with the incision and forms a working channel between a location external to the abdominal wall and a location internal to the abdominal wall. The material of the access seal is adapted to conform to a surface of an instrument inserted through the working channel.
Abstract:
A surgical obturator adapted to penetrate a body wall includes an elongate shaft having an axis which extends between a proximal end and a distal end. A bladeless tip, disposed at the distal end of the shaft has an outer surface which extends to a blunt point. The outer surface has a pair of side sections separated by an intermediate section. The side sections extend from the blunt point radially outwardly with progressive positions proximally along the axis. These side sections include a distal portion in proximity to the blunt point, and a proximal portion in proximity to the shaft. The distal portion of the side section is twisted radially with respect to the proximal portion of the side section. The outer surface in radial cross section has the general configuration of a geometric shape which rotates in a first direction about the axis with progressive proximal radial cross sections along the axis.
Abstract:
An electrosurgical tool can be used to fuse tissue. The electrosurgical tool can include a jaw assembly, an elongate shaft, and a handle assembly. Actuation of the handle assembly can actuate the jaw assembly. The elongate shaft can be rotatable without disrupting electrical connection to the jaw assembly. The electrosurgical tool can include a cutting blade to separate fused tissue. The electrosurgical tool can also include a jaw assembly configuration or an exterior cutting electrode to improve surgical access with the tool.