摘要:
The present invention provides a method for reducing fouling, including particulate-induced fouling, in a hydrocarbon refining process including the steps of providing a crude hydrocarbon for a refining process; adding at least one polyalkyl succinic anhydride derivative additive disclosed herein. The additive can be complexed with a boronating agent, such as boric acid, to yield a boron-containing polyalkyl succinic anhydride derivative.
摘要:
Atmospheric and/or vacuum resid fractions of a high solvency dispersive power (HSDP) crude oil are added to a blend of crude oil to prevent fouling of crude oil refinery equipment and to perform on-line cleaning of fouled refinery equipment. The HSDP resid fractions dissolve asphaltene precipitates and maintain suspension of inorganic particulates before coking affects heat exchange surfaces.
摘要:
A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
摘要:
Fouling of heat exchange surfaces is mitigated by a process in which a mechanical force is applied to a fixed heat exchanger to excite a vibration in the heat exchange surface and produce shear waves in the fluid adjacent the heat exchange surface. The mechanical force is applied by a dynamic actuator coupled to a controller to produce vibration at a controlled frequency and amplitude output that minimizes adverse effects to the heat exchange structure. The dynamic actuator may be coupled to the heat exchanger in place and operated while the heat exchanger is on line.
摘要:
Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects includes a base non-HSDP crude oil and an effective amount of resins isolated from a high solvency dispersive power (HSDP) crude oil, and method of making same. Also, methods of using such non-HSDP crude oil for on-line cleaning of a fouled crude oil refinery component, for reducing fouling in a crude oil refinery component, and in a system capable of experiencing fouling conditions associated with particulate or asphaltene fouling.
摘要:
Method of isolating active resins from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and combining the DAO fraction and the second asphaltenes fraction to form a de-resinated crude. Method of using components isolated from a high solvency dispersive power (HSDP) crude oil includes providing a HSDP crude oil, deasphalting the HSDP crude oil into at least a deasphalted oil (DAO) fraction and a first asphaltenes fraction, deasphalting the first asphaltenes fraction to isolate active resins from a second asphaltenes fraction, and selecting at least one of the DAO fraction, the active resins, or the second asphaltenes fraction for use in a refinery process.
摘要:
A high solvency dispersive power (HSDP) crude oil is added to a blend of incompatible and/or near-incompatible oils to proactively address the potential for fouling heat exchange equipment. The HSDP component dissolves asphaltene precipitates and maintains suspension of inorganic particulates before coking affects heat exchange surfaces. HSDP co-blending for fouling mitigation and on-line cleaning can be affected using different concentrations of top-performing and moderate-performing HSDP crude oils.
摘要:
Fouling of heat exchange surfaces is mitigated by a process in which a mechanical force is applied to a fixed heat exchanger to excite a vibration in the heat exchange surface and produce shear waves in the fluid adjacent the heat exchange surface. The mechanical force is applied by a dynamic actuator coupled to a controller to produce vibration at a controlled frequency and amplitude output that minimizes adverse effects to the heat exchange structure. The dynamic actuator may be coupled to the heat exchanger in place and operated while the heat exchanger is on line.
摘要:
Method and system for predicting a need for introducing anti-fouling additives to a hydrocarbon stream in a hydrocarbon refinery. The method comprises characterizing whether the hydrocarbon stream is a non-high solvency dispersive power (“HSDP”) crude and performing at least one of determining whether the hydrocarbon stream is subject to filterable solids levels greater than about 100 wppm or classifying whether the hydrocarbon stream has an expected low flow velocity during normal operating conditions within the refinery. The method further comprises indicating, using a processor, that anti-fouling additives are recommended if the hydrocarbon stream is characterized to be a non-HSDP crude and either the hydrocarbon stream is determined to be subject to filterable solids levels greater than about 100 wppm or the hydrocarbon stream is classified as having expected low flow within a heat exchanger of the refinery.
摘要:
A method for the on-line cleaning of a heat exchanger used with petroleum process fluids which create coke deposits of asphaltenic origin on the exchanger tubes. The asphaltenes are removed by re-dissolution in a solvent oil of high solubility power for the asphaltenes. Certain asphaltenic crudes are useful as solvents in view of their chemical similarity to the asphaltene coke precursors; also useful are refined petroleum fractions such as gas oils which are also characterized by their solvency for asphaltenes. The solvent oil may be admitted to the heat exchanger following withdrawal of the process fluid and then allowed to soak and dissolve the asphaltene coke precursors after which the resulting solution may be withdrawn and the exchanger returned to use without being at any time disconnected from its associated process unit.