摘要:
A method and system for improving the capability of a surface of an organic structure to bond with another material includes irradiating a target area of the surface of a structure with pulsed, incoherent optical energy having wavelength components which range from 160-5000 nanometers at an intensity sufficient to photodecompose any adventitious organic substances on the surface and to photodecompose a thin layer of molecular bonds forming the surface of the structure; and exposing the target area of the surface to ionized gas that chemically reacts with the target area of the surface to increase the surface free energy of the surface. A similar method and system may also be employed to improve the bondability of a metallic surface by first precleaning the metallic surface to dislodge any inorganic substances from the surface; and second irradiating a target area of the surface with pulsed, incoherent optical energy having wavelength components in the range of 160-5000 nanometers at an intensity sufficient to photodecompose any organic substances present on the surface.
摘要:
A method is provided for removing material from a structure having at least one layer of material formed on a substrate. The method includes the steps of irradiating a target area of a structure with radiant energy sufficient to break or weaken chemical bonds in the material, and impinging the target area with a particle stream to remove the pyrolyzed material from the structure. The method may be implemented by a system comprising a housing having a window; a radiant energy source mounted in the housing for irradiating the target area of the structure with the radiant energy; and a nozzle mounted to the exterior of the housing for directing the stream of particles at the target area.
摘要:
A method for removing material from a structure, comprising the steps of: (1) generating a light beam; (2) irradiating the surface material of a structure with the light beam having an intensity sufficient to ablate the surface material and to cause the surface material to generate spectral emission signals having intensities; (3) scanning the structure with the light beam at a scan speed; (4) monitoring the spectral emissions to detect a selected one of the spectral emission signals having a selected wavelength and generating an electronic output signal representative of the intensity of a selected one of the spectral emission signals in response to detecting the selected one of the spectral emission signals; (5) determining an updated scan speed functionally related to the electronic output signal; and (6) directing the scan speed to be equal to the updated scan speed. A second embodiment determines the updated scan speed based on the intensity of spectral emission signals detected during predetermined intervals while the structure is illuminated by the light source. A third embodiment determines an updated scan speed based on the intensity of spectral emission signals resulting from a laser pulse irradiating the structure when the output of the light beam is approximately at a minimum.