Abstract:
Planning and/or drilling wellbores. At least some of the various embodiments are methods including: receiving data indicative of position of a first wellbore; reading data indicative of position of an offset wellbore; reading data indicative of a fracture diameter for the offset wellbore; calculating a first positional uncertainty of the first wellbore; calculating a second positional uncertainly of the offset wellbore taking into account the data indicative of position and the data indicative of fracture diameter; and generating a value indicative of proximity of the positional uncertainties.
Abstract:
A drilling system may include an outer sleeve, and a rotary steerable module including a shaft extending within the outer sleeve. The rotary steerable module may further include bearings disposed within the outer sleeve and through which the shaft extends, and cams positioned along the shaft between the bearings. Each cam may include an eccentric ring through which the shaft extends. Each extension of the shaft through one of the eccentric rings defines a bend in the shaft within the outer sleeve, the bend having a bend angle. A method of use and a drilling control apparatus are also provided.
Abstract:
A power supply includes a rotor having an undulated surface (658, 858, 958, 10, 58) and a magnetostrictive material disposed adjacent to the undulated surface. The undulated surface alternatingly compresses the magnetostrictive material as the rotor rotates, inducing an electric current in a conductor coupled to the magnetostrictive material.
Abstract:
A system to harvest energy from fluid flow includes: an outer body including a flowway; an inner sleeve rotatably coupled to the outer body; and a magnetostrictive material disposed proximate to the inner sleeve to be strained due to a rotation of the inner sleeve in response to a fluid flow in the flowway.
Abstract:
An adjustable hole cleaning device is provided for cleaning a hole in a subterranean formation. A drillstring containing the device is rotated to drill a hole through the subterranean formation. While rotating the drillstring, drilling fluid is circulated through the drillstring and the device into the hole. In response to an increase in a hydrostatic pressure of the fluid in the drillstring, cleaning elements are extended from the device to clean accumulated cuttings from the drilled hole. The cleaning elements may clean the accumulated cuttings by agitating the circulating fluid in the hole. In response to a decrease in a hydrostatic pressure of the fluid in the drillstring, the cleaning elements may be retracted back into the device. The device may also include a set of ports which hydraulically open in response to the increase of hydrostatic pressure in the drillstring to disperse drilling fluid into the hole for cleaning accumulated cuttings. The device may be deactivated by dropping an object, such as a ball, into the device to prevent the extension of the cleaning elements and the opening of the ports.
Abstract:
A power supply includes a rotor having an undulated surface (658, 858, 958, 10, 58) and a magnetostrictive material disposed adjacent to the undulated surface. The undulated surface alternatingly compresses the magnetostrictive material as the rotor rotates, inducing an electric current in a conductor coupled to the magnetostrictive material.
Abstract:
A drilling system may include an outer sleeve, and a rotary steerable module including a shaft extending within the outer sleeve. The rotary steerable module may further include bearings disposed within the outer sleeve and through which the shaft extends, and cams positioned along the shaft between the bearings. Each cam may include an eccentric ring through which the shaft extends. Each extension of the shaft through one of the eccentric rings defines a bend in the shaft within the outer sleeve, the bend having a bend angle. A method of use and a drilling control apparatus are also provided.
Abstract:
Planning and/or drilling wellbores. At least some of the various embodiments are methods including: receiving data indicative of position of a first wellbore; reading data indicative of position of an offset wellbore; reading data indicative of a fracture diameter for the offset wellbore; calculating a first positional uncertainty of the first wellbore; calculating a second positional uncertainly of the offset wellbore taking into account the data indicative of position and the data indicative of fracture diameter; and generating a value indicative of proximity of the positional uncertainties.
Abstract:
This disclosure relates to determining optimal parameters for a downhole operation. In a general aspect, a computer-implemented method for managing a downhole operation is described in this disclosure. The method includes receiving a continuous stream of real-time data associated with an ongoing downhole operation at a data ware house. In the meantime, a selection of a downhole parameter is received from a user. Then, with a computing system, the selected downhole parameter is optimized based on a portion of the received stream of data to approach a target value of the selected downhole parameter. The optimized downhole parameter can then be used in the ongoing operation.