Abstract:
A base station includes a controller configured to configure an MRS resource set comprising a group of MRS resources, each MRS resource comprising a set of MRS antenna ports. If at least two MRS antenna ports belong to a same MRS resource, then the at least two MRS antenna ports are quasi co-located with respect to a first set of QCL parameters, else if the at least two MRS antenna ports belong to a same MRS resource set, then the at least two MRS antenna ports are quasi co-located with respect to a second set of QCL parameters, and else the at least two MRS antenna ports are not quasi co-located with respect to either the first set or the second set of QCL parameters. The MRS is a CSI-RS for estimating a CSI and at least one of the first set and the second set of QCL parameters.
Abstract:
A user equipment (UE) in a wireless communication system. The UE comprises at least one processor configured to determine a first subcarrier spacing and a transceiver configured to transmit, to a base station (BS), random access signals generated with the first subcarrier spacing and receive a downlink control signaling comprising a physical (PHY) resource configuration that includes a second subcarrier spacing. The UE further comprises at least one processor configured to set the PHY resource configuration for at least one of uplink transmission or downlink reception.
Abstract:
A base station includes a controller configured to configure an MRS resource set comprising a group of MRS resources, each MRS resource comprising a set of MRS antenna ports. If at least two MRS antenna ports belong to a same MRS resource, then the at least two MRS antenna ports are quasi co-located with respect to a first set of QCL parameters, else if the at least two MRS antenna ports belong to a same MRS resource set, then the at least two MRS antenna ports are quasi co-located with respect to a second set of QCL parameters, and else the at least two MRS antenna ports are not quasi co-located with respect to either the first set or the second set of QCL parameters. The MRS is a CSI-RS for estimating a CSI and at least one of the first set and the second set of QCL parameters.
Abstract:
A relay node capable of supporting wireless backhaul communication includes a controller configured to identify a first timing of a backhaul downlink (DL) transmission and a second timing of an access uplink (UL) transmission to be substantially aligned, and a transceiver configured to receive at least one first symbol in the backhaul DL transmission from an base station (BS), and receive at least second symbol in an access UL transmission from a user equipment (UE). The controller is further configured to substantially align a third timing of a backhaul uplink (UL) transmission and a fourth timing of an access downlink (DL) transmission, wherein the transceiver is further configured to transmit at least third symbol in a backhaul uplink (UL) transmission to the BS, and transmit at least fourth symbol in the access DL transmission to the UE.
Abstract:
A user equipment (UE) performs a method for supporting discontinuous receive (DRX) in a wireless network. The method includes waking up at a wake up time associated with a beginning of a DRX cycle, the DRX cycle comprising a plurality of subframes. The method also includes determining whether to perform receive beam training before a beginning of a time period for downlink communication. The method further includes receiving data during the time period for downlink communication.
Abstract:
A user equipment (UE) in a wireless communication system. The UE comprises at least one processor configured to determine a first subcarrier spacing and a transceiver configured to transmit, to a base station (BS), random access signals generated with the first subcarrier spacing and receive a downlink control signaling comprising a physical (PHY) resource configuration that includes a second subcarrier spacing. The UE further comprises at least one processor configured to set the PHY resource configuration for at least one of uplink transmission or downlink reception.
Abstract:
A user equipment, apparatus, and method are provided for wireless communication using an IG-OFDM structure. An apparatus is configured to transmit a known reference signal. The apparatus is configured to receive, in response to the reference signal and from at least one user equipment (UE), capability information that includes at least one of the sub-band bandwidth or number of independently decodable sub-bands that can be dynamically turned on or off by the at least one UE. The apparatus is configured to define an interleaved guard OFDM (IG-OFDM) structure according to the received capability information, the IG-OFDM structure including guard tones distributed within an OFDM symbol where there is no signal transmission on these guard tones. The apparatus is configured to communicate with the at least one UE using a transmitted waveform that is shaped according to the IG-OFDM structure.
Abstract:
A base station includes a controller configured to map initial access signals, each initial access signal corresponding to one of a plurality of transmit beams, to a subset or all of a plurality of predefined time locations in at least one periodicity, and a transmitter configured to transmit the mapped initial access signals to a UE and indicate OFDM symbols that are not mapped with the initial access signals in the one periodicity to the UE. A UE includes a transceiver configured to receive initial access signals mapped to a subset or all of time locations in one periodicity from a base station, the each initial access signal corresponding to one of a plurality of different beams, and a controller configured to perform an initial access to the base station and receive the indication of OFDM symbols that are not mapped with the initial access signals in the one periodicity.
Abstract:
A resource allocation message includes a resource allocation field. The resource allocation field includes a first field that includes either a first sub-field or a first sub-field and a second sub-field with the first sub-field configured to hold a first value that indicates two or more logical indices and the second sub-field configured to hold a third value. Each of the logical indices is associated with a sub-band pair of resource units. The sub-band pair of resource units includes either a first sub-band resource unit or a first sub-band resource unit and a second sub-band resource unit. The resource allocation field also includes a second field configured to hold a second value that indicates, either alone or in combination with the third value, a first sub-band resource unit or a second sub-band resource unit for each of the sub-band pair of resource units indicated by the first field.
Abstract:
A user equipment, apparatus, and method are provided for wireless communication using an IG-OFDM structure. An apparatus is configured to transmit a known reference signal. The apparatus is configured to receive, in response to the reference signal and from at least one user equipment (UE), capability information that includes at least one of the sub-band bandwidth or number of independently decodable sub-bands that can be dynamically turned on or off by the at least one UE. The apparatus is configured to define an interleaved guard OFDM (IG-OFDM) structure according to the received capability information, the IG-OFDM structure including guard tones distributed within an OFDM symbol where there is no signal transmission on these guard tones. The apparatus is configured to communicate with the at least one UE using a transmitted waveform that is shaped according to the IG-OFDM structure.