Abstract:
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, and security and safety related services, on the basis of 5G communication technologies and I-T-related technologies. A method for analyzing signal transmission properties in a wireless communication system, according to one embodiment of the present specification, comprises: obtaining first information comprising three-dimensional map information; obtaining second information comprising real environment information from image information relating to the three-dimensional map information; determining locations of a plurality of transmitter candidates on the basis of at least one of the first information and the second information; and performing a ray tracing simulation on the basis of the first information and the second information. The preset research was carried out with the support of the “Cross-ministry Giga Korea Project” of the Ministry of Science, ICT and Future Planning, of the Republic of Korea.
Abstract:
The present invention relates to a method and a device for selecting a beam in a wireless communication system which uses a plurality of antennas such as an array antenna. A method according to one embodiment of the present invention is a method for selecting a transmission beam in a transmission device of a wireless communication device comprising a transmission device having a plurality of transmission array antennas, and a receiving device having receiving array antennas in the same number as the number of transmission array antennas, and the method comprises the steps of: determining antenna pairs by measuring the transmission rate of each of the receiving array antennas of the receiving device, individually for each array antenna; determining the number of transmission array antennas and individual transmission-array-antenna modes so as to transmit data according to the service requirements of data whose transmission is required, when data transmission is required; and transmitting data through the determined transmission array antennas.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Link setup using different Radio Access Technologies (RATs) in a wireless communication system is provided. A method for operating a device supporting a first RAT and a second RAT includes sending information notifying a discovery interval start time for the second RAT, using the first RAT, and sending discovery signals during the discovery interval using the second RAT.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to an operating method of an electronic device for estimating an angle for another device, including: determining errors for candidate angles of channel measurement values corresponding to a plurality of beams for the other device; determining distances between the angle of a beam determined through beam training with the other device and at least one candidate angle; and estimating an angle for the other device based on the distances and the errors. In addition, the present disclosure also includes embodiments different from the above described embodiment.
Abstract:
The disclosure relates to a communication technique and system that fuse 5th generation (5G) or pre-5G communication system with Internet of things (IoT) technology to support higher data transfer rate after 4th generation (4G) communication system, such as long term evolution (LTE). The disclosure applies to intelligent services (e.g., a smart home, a smart building, a smart city, a smart car or a connected car, healthcare, digital education, retail, security and safety related services, and the like) based on 5G communication technology and IoT related technology. A method and a device for supporting edge computing in a virtual radio access network are provided.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments of the present disclosure, an operating device connected to at least one base station in a wireless communication system comprises at least one transmitter-receiver and at least one processor connected to the at least one transmitter-receiver, wherein the at least one processor can determine a coverage formed by beams of the at least one base station and change a beam operation configuration for the at least one base station when the number of beams, which can be provided to a terminal, is greater than or equal to a threshold value or another terminal is positioned outside the coverage. This study was conducted with the support of the “Cross-Ministry Giga KOREA Project” by the government (Ministry of Science, Technology and Information) in 2017 (No. GK17N0100, Development of Millimeter Wave 5G Mobile Communication System).
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An apparatus and method are provided for analyzing propagation characteristics in a wireless communication system. The method includes analyzing a first propagation characteristic relating to a first antenna element; and determining a second propagation characteristic relating to a second antenna element, based on the first propagation characteristic.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Link setup using different Radio Access Technologies (RATs) in a wireless communication system is provided. A method for operating a device supporting a first RAT and a second RAT includes sending information notifying a discovery interval start time for the second RAT, using the first RAT, and sending discovery signals during the discovery interval using the second RAT.
Abstract:
A method of an electronic device and an electronic device using the same is provided. The electronic device includes a communication module and a processor. The processor confirms context information of the electronic device, selects at least one frequency band or at least one communication path, which are supported by the electronic device, based on the context information, and communicates data between the electronic device and an external electronic device, based on the at least one frequency band or the at least one communication path, using the communication module.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to an operating method of an electronic device for estimating an angle for another device, including: determining errors for candidate angles of channel measurement values corresponding to a plurality of beams for the other device; determining distances between the angle of a beam determined through beam training with the other device and at least one candidate angle; and estimating an angle for the other device based on the distances and the errors. In addition, the present disclosure also includes embodiments different from the above described embodiment.