Abstract:
Provided is an optical phased array including a light injector, a first splitter connected to the light injector, a first phase shifter connected to the first splitter, a plurality of waveguides connected to the first splitter, portions of the plurality of waveguides being connected to the first splitter via the first phase shifter, an antenna array connected to the plurality of waveguides, a single mode filter provided in each of the plurality of waveguides, and a first photodetector connected to the first splitter and configured to detect a portion of light radiated onto the antenna array.
Abstract:
A photonic integrated circuit device includes a semiconductor substrate (e.g., wafer) having a chip region therein, which is bounded on at least one side thereof by a scribe line. The chip region includes an optical transmitter, an optical receiver and a test optical waveguide. This test optical waveguide is coupled to the optical transmitter and the optical receiver and overlaps the scribe line. During a substrate dicing operation, a portion of the test optical waveguide overlapping the scribe line is removed.
Abstract:
A memory system in accordance with an embodiment of the inventive concept includes a memory controller comprising a controller optical transmission unit photoelectrically-converting a data signal to output a first optical modulation signal and a second optical modulation signal, a first memory device which is optically connected with the memory controller to receive the first optical modulation signal, and a second memory device which is optically connected with the memory controller to receive the second optical modulation signal. The first optical modulation signal and the second optical modulation signal are complementary to each other.
Abstract:
Provided is an optical isolator including a semiconductor substrate, an optical attenuator and an optical amplifier aligned with each other on the semiconductor substrate, an input optical waveguide connected to the optical attenuator, and an output optical waveguide connected to the optical amplifier, wherein a gain of the optical amplifier decreases based on an intensity of light incident on the optical amplifier increasing, wherein a first input light incident on the optical attenuator through the input optical waveguide is output as a first output light through the output optical waveguide, and a second input light incident on the optical amplifier through the output optical waveguide is output as a second output light through the input optical waveguide, and wherein when an intensity of the first input light and an intensity of the second input light are equal, an intensity of the first output light is greater than an intensity of the second output light.
Abstract:
A light detection and ranging (LiDAR) apparatus capable of extracting speed information and distance information of objects in front thereof is provided. The LiDAR apparatus includes: a continuous wave light source configured to generate continuous wave light; a beam steering device configured to emit the continuous wave light to an object for a first time and stop emitting the continuous wave light to the object for a second time; a receiver configured to receive the continuous wave light that is reflected from the object to form a reception signal; and a signal processor configured to obtain distance information and speed information about the object based on the reception signal.
Abstract:
Provided is an optical isolator including a semiconductor substrate, an optical attenuator and an optical amplifier aligned with each other on the semiconductor substrate, an input optical waveguide connected to the optical attenuator, and an output optical waveguide connected to the optical amplifier, wherein a gain of the optical amplifier decreases based on an intensity of light incident on the optical amplifier increasing, wherein a first input light incident on the optical attenuator through the input optical waveguide is output as a first output light through the output optical waveguide, and a second input light incident on the optical amplifier through the output optical waveguide is output as a second output light through the input optical waveguide, and wherein when an intensity of the first input light and an intensity of the second input light are equal, an intensity of the first output light is greater than an intensity of the second output light.
Abstract:
Provided is an optical modulating device including a substrate including first and second trenches, a phase modulator in a region of the substrate, the phase modulator including an undoped region provided between the first and the second trenches, and first and a second doped regions which are apart from each other with the undoped region therebetween, wherein the phase modulator is configured to modulate a phase of light traveling through the undoped region based on a first electrical signal applied to the phase modulator, an amplifier including a first doped layer, a quantum well layer, a clad layer, and a second doped layer sequentially on the substrate, the amplifier overlapping at least a portion of the phase modulator and being configured to amplify the light based on a second electrical signal applied to the amplifier, and an insulating layer between the phase modulator and the amplifier.
Abstract:
An object detection device and an operating method thereof are provided. The object detection device detects light and outputs a received signal, which is an electrical signal, time-delays a part of the received signal with respect to a rest of the received signal, converts the rest of the received signal into a digital signal, converts the time-delayed part of the received signal into one or more time-delayed digital signals, and determines a distance to an object based on the digital signal and the one or more time-delayed digital signals.
Abstract:
A photonic integrated circuit device includes a semiconductor substrate (e.g., wafer) having a chip region therein, which is bounded on at least one side thereof by a scribe line. The chip region includes an optical transmitter, an optical receiver and a test optical waveguide. This test optical waveguide is coupled to the optical transmitter and the optical receiver and overlaps the scribe line. During a substrate dicing operation, a portion of the test optical waveguide overlapping the scribe line is removed.
Abstract:
Provided is a light detection and ranging (LiDAR) apparatus including a plurality of switches connected in a binary tree structure, a light source and a photodetector respectively connected to a root switch provided on a root node of the binary tree structure, and a light transmission/reception optical system connected to a plurality of terminal switches provided at a plurality of terminal nodes of the binary tree structure, the light transmission/reception optical system being configured to transmit light to an outside of the LiDAR apparatus or receive light from the outside, wherein the root switch is a 2×2 switch including a first upstream side port, a second upstream side port, a first downstream side port, and a second downstream side port, and wherein the light source is connected to the first upstream side port and the photodetector is connected to the second upstream side port.