Abstract:
A light detection and ranging (LiDAR) device includes a transmitter configured to transmit a continuous wave light to an object and provide a local oscillator (LO) light corresponding to the transmitted continuous wave light; a delay circuit configured to time delay the LO light; a receiver configured to receive the continuous wave light reflected from an object; and a detection circuit configured to determine a distance from the LiDAR device to the object based on the time delayed LO light and the received continuous wave light.
Abstract:
An object detection device may include: a converter configured to convert a transmission signal radiated towards an object into a digital transmission signal and a received signal reflected from the object into a digital received signal, according to a predetermined sampling period; and at least one processor configured to: interpolate between elements of the digital transmission signal and the digital received signal that have the predetermined sampling period, to obtain an interpolated transmission signal and an interpolated received signal; remove noise from each of the interpolated transmission signal and the interpolated received signal; generate a cross-correlation signal between the interpolated transmission signal from which the noise is removed and the interpolated received signal from which the noise is removed; and acquire a three-dimensional (3D) image of the object based on at least one peak value of the cross-correlation signal.
Abstract:
Provided is an optical phased array including a light injector, a first splitter connected to the light injector, a first phase shifter connected to the first splitter, a plurality of waveguides connected to the first splitter, portions of the plurality of waveguides being connected to the first splitter via the first phase shifter, an antenna array connected to the plurality of waveguides, a single mode filter provided in each of the plurality of waveguides, and a first photodetector connected to the first splitter and configured to detect a portion of light radiated onto the antenna array.
Abstract:
Provided is an optical isolator including a semiconductor substrate, an optical attenuator and an optical amplifier aligned with each other on the semiconductor substrate, an input optical waveguide connected to the optical attenuator, and an output optical waveguide connected to the optical amplifier, wherein a gain of the optical amplifier decreases based on an intensity of light incident on the optical amplifier increasing, wherein a first input light incident on the optical attenuator through the input optical waveguide is output as a first output light through the output optical waveguide, and a second input light incident on the optical amplifier through the output optical waveguide is output as a second output light through the input optical waveguide, and wherein when an intensity of the first input light and an intensity of the second input light are equal, an intensity of the first output light is greater than an intensity of the second output light.
Abstract:
A light detection and ranging (LiDAR) apparatus capable of extracting speed information and distance information of objects in front thereof is provided. The LiDAR apparatus includes: a continuous wave light source configured to generate continuous wave light; a beam steering device configured to emit the continuous wave light to an object for a first time and stop emitting the continuous wave light to the object for a second time; a receiver configured to receive the continuous wave light that is reflected from the object to form a reception signal; and a signal processor configured to obtain distance information and speed information about the object based on the reception signal.
Abstract:
Provided is a tunable laser source including a plurality of optical waveguides, at least three optical resonators provided between the plurality of optical waveguides and optically coupled to the plurality of optical waveguides, the at least three optical resonators having different lengths, and at least one optical amplifier provided on at least one of the plurality of optical waveguides, wherein a ratio of a first length of a first optical resonator of the at least three optical resonators to a second length of a second optical resonator of the at least three optical resonators is not an integer.
Abstract:
A burst mode optical receiver includes a pre-amplifier configured to convert an optical burst mode signal into a voltage signal, a reference controller configured to determine a reference voltage for the voltage signal in response to a mode signal from a host indicating an interval during which the voltage signal is DC balanced, and a main amplifier configured to restore the voltage signal to a data signal based on the reference voltage. Related methods of operation are also discussed.
Abstract:
Provided is a light detection and ranging (LiDAR) apparatus including a light source configured to generate light, an optical transmitter configured to emit the light generated by the light source to outside of the LiDAR apparatus, an optical receiver configured to receive light from the outside of the LiDAR apparatus, a resonance-type photodetector configured to selectively amplify and detect light having a same wavelength as a wavelength of light generated by the light source among the light received by the optical receiver, and a processor configured to control the light source and the resonance-type photodetector, wherein the resonance-type photodetector includes a resonator, a phase modulator provided on the resonator and configured to control a phase of light traveling along the resonator based on control of the processor, and an optical detector configured to detect an intensity of the light traveling along the resonator.
Abstract:
An object detection device may include: a converter configured to convert a transmission signal radiated towards an object into a digital transmission signal and a received signal reflected from the object into a digital received signal, according to a predetermined sampling period; and at least one processor configured to: interpolate between elements of the digital transmission signal and the digital received signal that have the predetermined sampling period, to obtain an interpolated transmission signal and an interpolated received signal; remove noise from each of the interpolated transmission signal and the interpolated received signal; generate a cross-correlation signal between the interpolated transmission signal from which the noise is removed and the interpolated received signal from which the noise is removed; and acquire a three-dimensional (3D) image of the object based on at least one peak value of the cross-correlation signal.
Abstract:
Provided is a tunable laser source including a plurality of optical waveguides, at least three optical resonators provided between the plurality of optical waveguides and optically coupled to the plurality of optical waveguides, the at least three optical resonators having different lengths, and at least one optical amplifier provided on at least one of the plurality of optical waveguides, wherein a ratio of a first length of a first optical resonator of the at least three optical resonators to a second length of a second optical resonator of the at least three optical resonators is not an integer.