Abstract:
A piezoelectric valve including an actuator that drives a valve body; a valve seat plate including a valve seat that is adapted to be positioned in contact with and away from the valve body, and a discharge passage; and a body case that houses the valve seat plate, in which the actuator includes a proximal portion fixed to the valve seat plate, a piezoelectric element having one end portion connected to an attachment face of the proximal portion and extending in a first longitudinal direction, a support portion integrally formed with the proximal portion, the support portion being arranged side-by-side with the piezoelectric element and extending in a second longitudinal direction crossing the first longitudinal direction, an operating portion connected to another end portion of the piezoelectric element and to a distal end portion of the support portion.
Abstract:
Provided is a piezoelectric valve in which the valve is opened/closed utilizing a displacement of a laminated piezoelectric element, including: a valve main body having a gas pressure chamber that receives compressed gas supplied externally; and an actuator having a valving element, the laminated piezoelectric element that generates a driving force required for operating the valving element as the displacement, and a displacement enlarging mechanism that enlarges the displacement of the laminated piezoelectric element to be acted on the valving element, the actuator being disposed in the valve main body, in which a surface of the laminated piezoelectric element is coated with silicone in a state in which the laminated piezoelectric element is integrated into the actuator.
Abstract:
A piezoelectric valve stably supplies gas even for a long gas ejection time, with a high responsivity to opening the valve, is provided. The piezoelectric valve, including a gas-pressure-chamber for receiving a compressed gas supplied from outside, a gas-discharge-channel through which the compressed gas is discharged from the gas-pressure-chamber, comprises: a valve body disposed in the gas-pressure-chamber and opens/closes the gas-discharge-channel; a piezoelectric element for producing a driving force to move the valve body as a displacement; a displacement-enlarging-mechanism for enlarging the displacement of the piezoelectric element to act on the valve body; and a driving unit having a signal-generating-unit for generating a signal comprising a pre-pulse and a main pulse and provides the signal generated by the signal-generating-unit to a driving circuit as an input signal to apply a driving voltage to the piezoelectric element to make the piezoelectric element expand and drive the valve body open.
Abstract:
To provide an optical grain sorter that can reduce the proportion of non-defective grains blown off collaterally, and even in a case in which a plurality of defective grains or the like fall down in a state overlapping each other, can blow off all the defective grains or the like. The optical granular matter sorter includes a control unit configured to control an ejection time of a compressed gas from an air ejecting unit based on a result of detection obtained by an optical detecting unit, in which the control unit has a comparing unit configured to compare a defect detection time for an object to be sorted by the optical detecting unit and a single-granular matter passage set time set in advance, and a calculating unit configured to multiply the defect detection time by a predetermined coefficient based on a result of comparison obtained by the comparing unit to calculate the ejection time, and in a case in which the defect detection time is less than or equal to the single-granular matter passage set time as the result of comparison obtained by the comparing unit, the calculating unit multiplies the defect detection time by a small coefficient as compared to a case in which the defect detection time exceeds the single-granular matter passage set time to calculate the ejection time, and controls the ejection time of the compressed gas from the air ejecting unit based on a result of calculation.
Abstract:
The present invention has an object to provide a blowing apparatus wherein a piezoelectric element is unlikely to cause insulation deterioration leading to burnout during use of the blowing apparatus. The blowing apparatus of the present invention blows compressed gas supplied from a compressed gas supply unit through a nozzle hole of a nozzle unit by opening a piezoelectric valve. The blowing apparatus comprises a humidity sensor detecting a humidity of the compressed gas inside a flow path unit, and a humidity control unit comparing a detected value of the humidity detected by the humidity sensor with a set value. If the humidity of the compressed gas inside the flow path unit detected by the humidity sensor is equal to or greater than the set value, the humidity control unit replaces the compressed gas inside the flow path unit with the compressed gas whose humidity is less than the set value and which is supplied from the compressed gas supply unit, before starting to use the blowing apparatus.
Abstract:
In an optical sorter that includes an optical detection unit to detect a to-be-sorted material at a detection position, a determining unit to determine a to-be-sorted material to be removed, based on a detection result by the optical detection unit, and an air-jetting unit to blow off and remove the to-be-sorted material to be removed using jet air of a compressed gas, based on a determination result by the determining unit, the air-jetting unit includes a piezoelectric valve to perform valve opening and closing by driving a valve disc utilizing displacement of a piezoelectric element, and a valve driving unit to apply a drive voltage to the piezoelectric element, and the valve driving unit controls the drive voltage applied to the piezoelectric element in accordance with the to-be-sorted material to be removed to thus control a jet-air pressure of the compressed gas for removing the to-be-sorted material.