Abstract:
A piezoelectric valve, having superior responsiveness during valve opening and capability to stabilize gas supply at an early stage, includes a gas pressure chamber receiving compressed gas and an exhaust path discharging the compressed gas from the gas pressure chamber; a valve disc placed in the gas pressure chamber to open and close the exhaust path; a piezoelectric element generating a driving force for operation of the valve disc, as a displacement; a displacement magnifying mechanism magnifying the displacement of the piezoelectric element and applying the magnified displacement to the valve disc; and driving means including a signal generator generating a signal including a first prepulse, a second prepulse, and a main pulse, applies a drive voltage to the piezoelectric element using the signal generated by the signal generator, as an input signal to a drive circuit, and drives and opens the valve disc by expanding the piezoelectric element.
Abstract:
A piezoelectric valve whose assembly work can be efficiently performed. A piezoelectric valve according to this invention includes a valve main body having a gas pressure chamber which receives compressed gas supplied from the outside, a plate which is disposed inside the valve main body and is fixed to the valve main body, and actuators each of which has a valve element, a piezoelectric element generating, in the form of a displacement, driving force required for operation of the valve element, and a displacement magnification mechanism for magnifying a displacement of the piezoelectric element and causing the magnified displacement to act on the valve element, are fixed to each of two surfaces of the plate, and are disposed inside the valve main body together with the plate.
Abstract:
A piezoelectric valve stably supplies gas even for a long gas ejection time, with a high responsivity to opening the valve, is provided. The piezoelectric valve, including a gas-pressure-chamber for receiving a compressed gas supplied from outside, a gas-discharge-channel through which the compressed gas is discharged from the gas-pressure-chamber, comprises: a valve body disposed in the gas-pressure-chamber and opens/closes the gas-discharge-channel; a piezoelectric element for producing a driving force to move the valve body as a displacement; a displacement-enlarging-mechanism for enlarging the displacement of the piezoelectric element to act on the valve body; and a driving unit having a signal-generating-unit for generating a signal comprising a pre-pulse and a main pulse and provides the signal generated by the signal-generating-unit to a driving circuit as an input signal to apply a driving voltage to the piezoelectric element to make the piezoelectric element expand and drive the valve body open.
Abstract:
A protruding section formed at the one side end of a connector section provided in a valve is inserted into a recessed section formed as part of a valve placement section of a fluid apparatus. The valve is caused to pivot with the inserted portion that serves as a supporting point, and an engaging section formed at the front end of a lever of a hook section formed at the other side end of the connector section is allowed to engage with an engaging protruding section formed as part of the valve placement section of the fluid apparatus. The valve is thus attached to the fluid apparatus.
Abstract:
A piezoelectric valve whose assembly work can be efficiently performed. A piezoelectric valve according to this invention includes a valve main body having a gas pressure chamber which receives compressed gas supplied from the outside, a plate which is disposed inside the valve main body and is fixed to the valve main body, and actuators each of which has a valve element, a piezoelectric element generating, in the form of a displacement, driving force required for operation of the valve element, and a displacement magnification mechanism for magnifying a displacement of the piezoelectric element and causing the magnified displacement to act on the valve element, are fixed to each of two surfaces of the plate, and are disposed inside the valve main body together with the plate.
Abstract:
Provided is a piezoelectric actuator that can reduce a risk of air leakage due to weakening of pressing force of a valve element against a valve seat surface and airtightness. The piezoelectric actuator is used for a piezoelectric valve that opens and closes a valve utilizing displacement of a laminated piezoelectric element. The piezoelectric actuator includes: a valve element; a laminated piezoelectric element that generates a driving force, required for operation of the valve element, as a displacement; and a displacement enlargement mechanism that enlarges a displacement of a laminated piezoelectric element and causes the enlarged displacement to act on the valve element. In the piezoelectric actuator, a surface of the valve element to be in contact with a valve seat of the piezoelectric valve is made flat and smooth in a state in which a tensile load is applied to the laminated piezoelectric element.
Abstract:
A piezoelectric valve includes: a valve main part including a gas pressure chamber receiving compressed gas supplied from outside; a plate inside the valve main part, and an actuator fixed to the plate and inside the valve main part, which is a case with an opening on a front surface. The plate includes a gas discharge path and a valve seat coming into contact with a valve element of the actuator opening and closing the gas discharge path. A lid member that closes the opening of the case has a gas discharge opening communicating with the gas discharge path of the plate; is welded and fixed to a front surface of the plate, where the gas discharge path opens, on an annular welded part surrounding the gas discharge opening; and is welded and fixed to an end surface of the case on an annular welded part on the outer peripheral part.
Abstract:
A protruding section formed at the one side end of a connector section provided in a valve is inserted into a recessed section formed as part of a valve placement section of a fluid apparatus. The valve is caused to pivot with the inserted portion that serves as a supporting point, and an engaging section formed at the front end of a lever of a hook section formed at the other side end of the connector section is allowed to engage with an engaging protruding section formed as part of the valve placement section of the fluid apparatus. The valve is thus attached to the fluid apparatus.
Abstract:
An optical granular material-sorting apparatus includes: a transfer means for transferring objects being sorted; an optical detection means for detecting, at a detection position, objects being sorted as they drop from an end of the transfer means; and a blasting means provided below the optical detection means and designed to blow away objects being sorted through blasting of air based on the result of detection by the optical detection means. The blasting means has a piezoelectric valve which is driven by a driving means to blast air based on the result of detection by the optical detection means. The driving means applies voltage to a piezoelectric element in multiple stages so as to suppress fluctuation in the amount of gas ejected from a gas release channel when the valve opens.