Abstract:
A method of analyzing a geologic formation having a borehole therein may include operating at least one tool within the borehole to collect respective borehole dimensions at different depths in the borehole, and collect respective total values for a given element at the different depths in the borehole. Each total value may be based upon both a value for an adjacent portion of the geologic formation and a value for material within the borehole. The method may also include determining each value of the given element in the adjacent portion of the geologic formation based upon the total value and the corresponding borehole dimensions.
Abstract:
A method for estimating an aspect of a formation using a nuclear spectroscopy tool includes placing a nuclear spectroscopy tool including a neutron source and a gamma ray detector into a borehole and performing a plurality of environmental measurements. Neutrons are emitted from the nuclear spectroscopy tool such that some of the neutrons generate gamma rays from a formation adjacent the nuclear spectroscopy tool, some of the neutrons generate gamma rays from elements within the nuclear spectroscopy tool and some of the neutrons generate gamma rays from an element in the drilling mud. An energy spectrum of gamma rays induced by the emitted neutrons can be detected with the tool and analyzed using a combination of standard spectra including at least two sub-standards that represent a common element or group of elements and that are differentiated based on location of neutron interaction, such as where the neutrons thermalize.
Abstract:
A presence of cement may be identified based on a downhole tool that may emit neutrons into a wellbore having at least one cement casing. The neutrons may interact with the particular material via inelastic scattering, inelastic neutron reactions, capture of neutrons and/or neutron activation through one of these reactions and cause a material to emit an energy spectrum of gamma rays, and wherein the downhole tool is configured to detect an energy spectrum of the gamma rays that is specific to at least one of a plurality of elements and associated a region within the wellbore. An amount of elements, such as calcium and silicon, may be determined from the gamma ray spectra that may indicate a present of cement within the wellbore.
Abstract:
Methods and apparatus for characterizing a subterranean formation traversed by a wellbore including collecting data from the formation using a tool wherein the tool collects data to form an azimuthal image, characterizing a section of the formation comprising data and images acquired in a high angle wellbore section or horizontal wellbore section using a parametric model, and performing an inversion using apparent densities and volumetric photoelectric factor images to build a formation model wherein the inversion is tailored for high angle wellbore sections and/or horizontal wellbore sections.
Abstract:
Systems and methods are provided for distinguishing between elements located at different distances from a radiation detector used in neutron-induced gamma-ray spectroscopy using a Doppler effect. A pulsed neutron generator may emit neutrons out of a downhole tool in a geological formation at an energy level high enough to cause inelastic scattering with nuclei of an element to generate gamma-rays. A gamma-ray detector may detect the energy levels of the gamma-rays, in the reference frame of the detector, and data processing circuitry takes the detected spectrum of gamma-rays and distinguishes spectra of gamma-ray energy levels for nuclei of the element located nearer to or farther from the detector based at least in part on the Doppler shift of the energy levels of respective gamma-rays.
Abstract:
A method of performing a wellbore operation includes: circulating a doped wellbore fluid comprising a non-radioactive doped particulate material in a wellbore; and logging the wellbore with a logging-while-drilling tool to determine at least one characteristic of the doped wellbore fluid. A method of performing a wellbore operation includes: circulating a doped wellbore fluid comprising a non-radioactive doped particulate material in a wellbore; logging the wellbore with a logging tool; and determining a location of at least one fracture by elemental spectroscopy measurements.
Abstract:
An aspect of a formation may be estimated by placing a nuclear spectroscopy tool including a neutron source and a gamma ray detector into a borehole and performing a plurality of environmental measurements. Neutrons are emitted from the nuclear spectroscopy tool such that some of the neutrons generate gamma rays from a formation adjacent the nuclear spectroscopy tool, some of the neutrons generate gamma rays from elements within the nuclear spectroscopy tool and some of the neutrons generate gamma rays from an element in the drilling mud. An energy spectrum of gamma rays induced by the emitted neutrons can be detected with the tool. The detected gamma-ray energy spectrum can be analyzed using a combination of standard spectra, where the shape of at least one of the standard spectra can be varied based on the environmental measurements to account for the environment's effects on gamma-ray spectra.
Abstract:
Rock properties of a geological formation may be determined using data representing elemental concentration within the geological formation. For example, the data representing the elemental concentration within the geological formation may be provided as input to a mapping function. The mapping function may capture nonlinear relationships among the concentrations of measurable elements in geological rock formation(s) and certain rock properties of said rock formation(s). Embodiments of the present disclosure are directed to techniques that improve determinations of rock properties of geological formations.
Abstract:
A presence of cement may be identified based on a downhole tool that may emit neutrons into a wellbore having at least one cement casing. The neutrons may interact with the particular material via inelastic scattering, inelastic neutron reactions, capture of neutrons and/or neutron activation through one of these reactions and cause a material to emit an energy spectrum of gamma rays, and wherein the downhole tool is configured to detect an energy spectrum of the gamma rays that is specific to at least one of a plurality of elements and associated a region within the wellbore. An amount of elements, such as calcium and silicon, may be determined from the gamma ray spectra that may indicate a present of cement within the wellbore.
Abstract:
Elemental concentrations in subterranean formations may be determined using neutron spectroscopy. For example, neutrons may be emitted by a downhole tool into the formation and produce gamma rays via inelastic scattering of fast neutrons or capture of slow neutrons. The borehole surrounding a downhole tool may introduce artifacts in the neutron spectroscopy measurement. Embodiments of the present disclosure are directed to techniques that reduce artifacts signals in downhole tools that include one or multiple detectors based at least in part on the inelastic and capture measurements.