Abstract:
Anisotropic elastic properties and subsequently in situ stress properties for a rock formation surrounding a wellbore are computed from rock physics and geomechanical models. Mineralogy data measured from DRIFTS on cuttings from the wellbore and rock physics and geomechanical models that have been log-calibrated in another wellbore are used in the computation. The method includes: (1) Defining and calibrating rock physics and geomechanical models using data from the first wellbore; (2) using DRIFTS analysis to measure mineralogy data on rock cuttings obtained through drilling operation in the second wellbore; and (3) using previously calibrated models to estimate in situ stress properties, including a stress index and the minimum principal stress magnitude.
Abstract:
A method includes receiving well log data for a plurality of wells. A flag is generated based at least partially on the well log data. The wells are sorted into groups based at least partially on the well log data, the flag, or both. A model is built for each of the wells based at least partially on the well log data, the flag, and the groups.
Abstract:
A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).
Abstract:
Embodiments herein relate to a method for recovering hydrocarbons from a formation including collecting and analyzing a formation sample, drilling operation data, and wellbore pressure measurement, estimating a reservoir and completion quality, and performing an oil field service in a region of the formation comprising the quality. In some embodiments, the formation sample is a solid collected from the drilling operation or includes cuttings or a core sample.
Abstract:
A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).
Abstract:
Methods of generating structural models of highly deviated or horizontal wells may be generated from the measurement of true stratigraphic thickness in three dimensions (TST3D). In one aspect, methods may include generating a structural model from one or more deviation surveys of a horizontal well, one or more single channel log measurements, and a three-dimensional reference surface.
Abstract:
Systems and methods presented herein are configured to monitor gas storage in a well and, more specifically, to invert optical measurements to predict the fractional molar composition of an unknown composition of a gas mixture comprised of hydrogen, carbon dioxide, other gases, or combinations thereof, in any underground reservoir or salt dome where hydrogen, carbon dioxide, and/or the other gases are stored or exist.
Abstract:
Sonic logging data including a sonic waveform associated with a plurality of shot gathers is accessed. A transformation operator is applied to the sonic logging data to provide a transformed sonic image, the transformation operator including at least one of a short time average long time average (STA/LTA) operator, a phase shift operator, and a deconvolution operator. A machine learning process is performed using the transformed sonic image to determine a sonic slowness associated with the sonic logging data. The sonic slowness is provided as an output.
Abstract:
A method includes receiving well log data for a plurality of wells. A flag is generated based at least partially on the well log data. The wells are sorted into groups based at least partially on the well log data, the flag, or both. A model is built for each of the wells based at least partially on the well log data, the flag, and the groups.
Abstract:
A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).