Abstract:
A resampling circuit converts first data updated synchronously with a first clock signal into second data updated synchronously with a second clock signal asynchronous with the first clock signal and outputs the second data. The resampling circuit measures a first time interval between a plurality of successive edges of the first clock signal, and a second time interval between one of the plurality of edges of the first clock signal and an edge of the second clock signal, with a third clock signal having a higher frequency than the first clock signal and the second clock signal. The resampling circuit calculates and outputs the second data updated at the edge of the second clock signal, based on the first time interval and the second time interval, and a plurality of the first data updated at the plurality of edges of the first clock signal.
Abstract:
An acquisition unit acquires the width-direction acceleration and the vertical-direction acceleration of a surface of a structure on which a moving object moves from an acceleration sensor provided in the structure on which the moving object moves. A displacement computation unit computes the vertical-direction displacement of the structure on the basis of the vertical-direction acceleration. A correlation determination unit determines the correlation between the width-direction acceleration and the vertical-direction displacement. A movement detection unit detects the movement of the moving object on the structure on the basis of the correlation.
Abstract:
A module includes a sensor device, a mounting substrate that has a plurality of mounting faces, a portion between the mounting faces adjacent to each other being foldable, a supporting member having fixing faces, wherein the sensor device is mounted on at least one of the mounting faces, each of the mounting faces is disposed along each of the fixing faces, and the sensor device is disposed on the supporting member side.
Abstract:
There is provided a liquid discharging apparatus which includes a discharge head that includes a nozzle forming surface on which nozzles for discharging liquid are formed; a wiping member that performs wiping by relatively moving on the nozzle forming surface while abutting on the nozzle forming surface; a cleaning liquid supply unit that supplies cleaning liquid provided for the wiping; and a control unit that performs reciprocating wiping control which performs the wiping by causing the wiping member for holding the cleaning liquid supplied from the cleaning liquid supply unit to perform a reciprocating operation in which, after relative movement is performed in a first direction along the nozzle forming surface, relative movement is performed in a second direction which is opposite to the first direction.
Abstract:
A dynamic response at a designated position is derived based on a deflection amount normalized by a vibration component of the dynamic response, an amplitude ratio, which is a ratio of a first deflection amount that is the normalized deflection amount indicating a distribution of a vibration amplitude of the observation point to a second deflection amount that is the normalized deflection amount indicating a distribution of a vibration amplitude of a designated position, the vibration component of the designated position derived based on the vibration component and the amplitude ratio, and the static response of the designated position derived based on the time-series data and the estimated value.
Abstract:
A measurement method includes: generating second measurement data by performing filter processing on observation data-based first measurement data; calculating a first deflection amount of a structure based on an approximate equation of deflection of the structure, observation information, and environment information; calculating a second deflection amount by performing filter processing on the first deflection amount; calculating a third deflection amount based on the second deflection amount and a first-order coefficient and a zero-order coefficient which are calculated based on the second measurement data and the second deflection amount, and the second deflection amount; calculating an offset based on the zero-order coefficient, the second deflection amount, and the third deflection amount; calculating a first static response by adding the offset and a product of the first-order coefficient and the first deflection amount; and calculating a first dynamic response by subtracting the first static response from the first measurement data.
Abstract:
A measurement method includes: performing low-pass filter processing and high-pass filter processing on target data; estimating correction data; generating vibration component data, and the estimating the correction data includes: specifying a first interval, a second interval, and a third interval; generating first interval correction data, generating second interval correction data in the second interval by setting data in an interval before a first intersection point of first line data and second line data as the first line data, setting data in an interval from the first intersection point to a second intersection point of second line data and third line data as the second line data, and setting data in an interval after the second intersection point as the third line data; and generating third interval correction data.
Abstract:
A measurement method includes: a step of acquiring first observation point information including a time point when each part of a moving object passes a first observation point and a physical quantity which is a response to an action; a step of acquiring second observation point information including a time point when the each part passes a second observation point and a physical quantity which is a response to an action; a step of calculating a deflection waveform of a structure generated by the each part; a step of adding the deflection waveforms to calculate a moving object deflection waveform, and calculating a path deflection waveform based on the moving object deflection waveform; a step of calculating a displacement waveform by twice integrating an acceleration of a third observation point; and a step of calculating, based on the path deflection waveform, a value of each coefficient of a polynomial approximating an integration error, and correcting the displacement waveform based on the value of each coefficient.
Abstract:
An acquisition unit acquires at least one of the vertical-direction acceleration and the width-direction acceleration of a surface of a structure on which a moving object moves from an acceleration sensor provided in the structure on which the moving object moves. An analysis unit analyzes the motion of the moving object moving on the structure on the basis of at least one of the vertical-direction acceleration and the width-direction acceleration.
Abstract:
A conversion section converts a change in signal information outputted from a vibration detector provided on a structural body from the change in the function of time into the change in the function of the distance between a moving object that moves on the structural body and the vibration detector. An attenuation characteristic calculation section calculates an attenuation characteristic of the structural body based on the signal information so converted as to represent the change in the function of the distance.