-
公开(公告)号:US20230244234A1
公开(公告)日:2023-08-03
申请号:US18120669
申请日:2023-03-13
Applicant: SKYDIO, INC.
Inventor: Peter HENRY , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G05D1/00 , G05B17/02 , B64C39/02 , B64D47/08 , B64D31/06 , G05D1/10 , G06T17/00 , G06T7/55 , G06T7/73 , G05B13/02 , G06T19/20 , H04N23/60 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64
CPC classification number: G05D1/0094 , G05B17/02 , B64C39/024 , B64D47/08 , B64D31/06 , G05D1/101 , G06T17/00 , G06T7/55 , G06T7/74 , G05B13/0265 , G05D1/0088 , G06T19/20 , H04N23/64 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64 , G06T2207/20221 , G06T2207/10032 , G06T2219/2004 , B64U10/13
Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.
-
公开(公告)号:US20230021969A1
公开(公告)日:2023-01-26
申请号:US17890884
申请日:2022-08-18
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: G08G5/00 , G06F3/04845 , G06F3/04817 , G06T17/05 , G06T19/00 , G06F3/04847 , B64C39/02 , B64D47/08 , G05D1/10 , G05D1/00 , G08G5/04 , G01S13/89 , G01S17/89 , H04N5/272 , G06T17/10 , G06V20/13 , G06V20/10
Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
-
公开(公告)号:US20210107682A1
公开(公告)日:2021-04-15
申请号:US16991122
申请日:2020-08-12
Applicant: Skydio, Inc.
Inventor: Yevgeniy Kozlenko , Jack Zhu , Gareth Benoit Cross , Teodor Tomic , Adam Bry , Abraham Galton Bachrach
Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include an unmanned aerial vehicle including a propulsion mechanism, an image sensor, and processing apparatus; and a dock including a landing surface configured to hold the unmanned aerial vehicle and a fiducial on the landing surface, wherein the processing apparatus is configured to: control the propulsion mechanism to cause the unmanned aerial vehicle to fly to a first location in a vicinity of the dock; access one or more images captured using the image sensor; detect the fiducial in at least one of the one or more images; determine a pose of the fiducial based on the one or more images; and control, based on the pose of the fiducial, the propulsion mechanism to cause the unmanned aerial vehicle to land on the landing surface.
-
公开(公告)号:US20250153861A1
公开(公告)日:2025-05-15
申请号:US19028085
申请日:2025-01-17
Applicant: Skydio, Inc.
Inventor: Yevgeniy Kozlenko , Jack Zhu , Gareth Cross , Teodor Tomic , Adam Bry , Abraham Galton Bachrach
Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include a landing surface configured to hold an unmanned aerial vehicle; a box configured to enclose the landing surface in a first arrangement of the dock and expose the landing surface in a second arrangement of the dock; and a retractable arm, wherein the landing surface is positioned at an end of the retractable arm and the retractable arm is configured to extend to move the landing surface outside of the box and contract to pull the landing surface inside of the box.
-
公开(公告)号:US20240166366A1
公开(公告)日:2024-05-23
申请号:US18397343
申请日:2023-12-27
Applicant: Skydio, Inc.
Inventor: Yevgeniy Kozlenko , Jack Zhu , Gareth Cross , Teodor Tomic , Adam Bry , Abraham Galton Bachrach
CPC classification number: B64F1/222 , B64D45/08 , B64F1/18 , B64C39/024 , B64U50/19 , B64U80/70 , B64U2201/10
Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include a landing surface configured to hold an unmanned aerial vehicle; a box configured to enclose the landing surface in a first arrangement of the dock and expose the landing surface in a second arrangement of the dock; and a retractable arm, wherein the landing surface is positioned at an end of the retractable arm and the retractable arm is configured to extend to move the landing surface outside of the box and contract to pull the landing surface inside of the box.
-
公开(公告)号:US11873116B2
公开(公告)日:2024-01-16
申请号:US16991122
申请日:2020-08-12
Applicant: Skydio, Inc.
Inventor: Yevgeniy Kozlenko , Jack Zhu , Gareth Benoit Cross , Teodor Tomic , Adam Bry , Abraham Galton Bachrach
CPC classification number: B64F1/222 , B64D45/08 , B64F1/18 , B64C39/024 , B64U50/19 , B64U80/70 , B64U2201/10
Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include an unmanned aerial vehicle including a propulsion mechanism, an image sensor, and processing apparatus; and a dock including a landing surface configured to hold the unmanned aerial vehicle and a fiducial on the landing surface, wherein the processing apparatus is configured to: control the propulsion mechanism to cause the unmanned aerial vehicle to fly to a first location in a vicinity of the dock; access one or more images captured using the image sensor; detect the fiducial in at least one of the one or more images; determine a pose of the fiducial based on the one or more images; and control, based on the pose of the fiducial, the propulsion mechanism to cause the unmanned aerial vehicle to land on the landing surface.
-
公开(公告)号:US11829142B2
公开(公告)日:2023-11-28
申请号:US18120669
申请日:2023-03-13
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G06T7/55 , G05D1/00 , G05B17/02 , B64C39/02 , B64D47/08 , B64D31/06 , G05D1/10 , G06T17/00 , G06T7/73 , G05B13/02 , G06T19/20 , H04N23/60 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64 , B64U10/13 , B64U101/30
CPC classification number: G05D1/0094 , B64C39/024 , B64D31/06 , B64D47/08 , G05B13/0265 , G05B17/02 , G05D1/0088 , G05D1/101 , G06T7/55 , G06T7/74 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/64 , H04N23/695 , H04N23/90 , B64U10/13 , B64U2101/30 , G06T2207/10032 , G06T2207/20221 , G06T2219/2004
Abstract: In some examples, an unmanned aerial vehicle (UAV) may access a scan plan that includes a sequence of poses for the UAV to assume to capture images of a scan target using one or more image sensors. The UAV may check a next pose of the scan plan for obstructions. Responsive to detection of an obstruction, the UAV may determine a backup pose based at least on a field of view of the next pose. The UAV may control a propulsion mechanism to cause the UAV to fly to assume the backup pose. The UAV may capture, based on the backup pose and using the one or more image sensors, one or more images of the scan target.
-
公开(公告)号:US20230359205A1
公开(公告)日:2023-11-09
申请号:US18222786
申请日:2023-07-17
Applicant: SKYDIO, INC.
Inventor: Peter HENRY , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G05D1/00 , G05B17/02 , B64C39/02 , B64D47/08 , B64D31/06 , G05D1/10 , G06T17/00 , G06T7/55 , G06T7/73 , G05B13/02 , G06T19/20 , H04N23/60 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64
CPC classification number: G05D1/0094 , G05B17/02 , B64C39/024 , B64D47/08 , B64D31/06 , G05D1/101 , G06T17/00 , G06T7/55 , G06T7/74 , G05B13/0265 , G05D1/0088 , G06T19/20 , H04N23/64 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64 , G06T2207/20221 , G06T2207/10032 , G06T2219/2004 , B64U10/13
Abstract: In some examples, an image of a scan target is presented in a user interface on a display associated with a computing device. The user interface receives at least one user input indicating at least one point in a perimeter or edge of a volume for encompassing the scan target presented in the image of the scan target. A graphical representation of the volume in relation to the image of the scan target is generated in the user interface. Information for defining a location of at least a portion of the volume in three-dimensional space is sent to an unmanned aerial vehicle (UAV) to cause, at least in part, the UAV to scan at least a portion of the scan target corresponding to the volume.
-
公开(公告)号:US11703864B2
公开(公告)日:2023-07-18
申请号:US17174583
申请日:2021-02-12
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G06T17/00 , G05D1/00 , G05B17/02 , B64C39/02 , B64D47/08 , B64D31/06 , G05D1/10 , G06T7/55 , G06T7/73 , G05B13/02 , G06T19/20 , H04N23/60 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64 , B64U10/13 , B64U101/30
CPC classification number: G05D1/0094 , B64C39/024 , B64D31/06 , B64D47/08 , G05B13/0265 , G05B17/02 , G05D1/0088 , G05D1/101 , G06T7/55 , G06T7/74 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/64 , H04N23/695 , H04N23/90 , B64U10/13 , B64U2101/30 , G06T2207/10032 , G06T2207/20221 , G06T2219/2004
Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine, based on a three-dimensional (3D) model including a plurality of points corresponding to a scan target, a scan plan for scanning at least a portion of the scan target. For instance, the scan plan may include a plurality of poses for the UAV to assume to capture images of the scan target. The UAV may capture with one or more image sensors, one or more images of the scan target from one or more poses of the plurality of poses. Further, the UAV may determine an update to the 3D model based at least in part on the one or more images. Additionally, the UAV may update the scan plan based at least in part on the update to the 3D model.
-
公开(公告)号:US11573544B2
公开(公告)日:2023-02-07
申请号:US17174585
申请日:2021-02-12
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: B64C39/02 , B64D47/08 , B64D31/06 , G06T17/00 , G06T19/20 , G06T7/55 , G05D1/00 , H04N5/00 , G05B17/02 , G05D1/10 , H04N5/232 , H04N5/247 , G06T7/73 , G05B13/02
Abstract: In some examples, an unmanned aerial vehicle (UAV) employs one or more image sensors to capture images of a scan target and may use distance information from the images for determining respective locations in three-dimensional (3D) space of a plurality of points of a 3D model representative of a surface of the scan target. The UAV may compare a first image with a second image to determine a difference between a current frame of reference position for the UAV and an estimate of an actual frame of reference position for the UAV. Further, based at least on the difference, the UAV may determine, while the UAV is in flight, an update to the 3D model including at least one of an updated location of at least one point in the 3D model, or a location of a new point in the 3D model.
-
-
-
-
-
-
-
-
-