-
公开(公告)号:US12169406B2
公开(公告)日:2024-12-17
申请号:US18520089
申请日:2023-11-27
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G05D1/69 , B64C39/02 , B64D31/06 , B64D47/08 , G05B13/02 , G05B17/02 , G05D1/00 , G05D1/227 , G05D1/689 , G06T7/55 , G06T7/73 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/60 , H04N23/695 , H04N23/90 , B64U10/13 , B64U101/30
Abstract: In some examples, one or more processors of an aerial vehicle access a scan plan including a sequence of poses for the aerial vehicle to assume to capture, using the one or more image sensors, images of a scan target. A next pose of the scan plan is checked for obstructions, and based at least on detection of an obstruction, the one or more processors determine whether a backup pose is available for capturing an image of the targeted point orthogonally along a normal of the targeted point. Responsive to determining that the backup pose is unavailable for capturing an image of the targeted point orthogonally along the normal of the targeted point, image capture of the targeted point is performed at an oblique angle to the normal of the targeted point.
-
公开(公告)号:US20230244233A1
公开(公告)日:2023-08-03
申请号:US18120643
申请日:2023-03-13
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G05D1/00 , G05B17/02 , B64C39/02 , B64D47/08 , B64D31/06 , G05D1/10 , G06T17/00 , G06T7/55 , G06T7/73 , G05B13/02 , G06T19/20 , H04N23/60 , H04N23/90 , H04N23/695 , G06V20/13 , G06V20/64
CPC classification number: G05D1/0094 , B64C39/024 , B64D31/06 , B64D47/08 , G05B13/0265 , G05B17/02 , G05D1/0088 , G05D1/101 , G06T7/55 , G06T7/74 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/64 , H04N23/90 , H04N23/695 , B64U10/13 , G06T2207/10032 , G06T2207/20221 , G06T2219/2004
Abstract: In some examples, an unmanned aerial vehicle (UAV) may identify a scan target. The UAV may navigate to two or more positions in relation to the scan target. The UAV may capture, using one or more image sensors of the UAV, two or more images of the scan target from different respective positions in relation to the scan target. For instance, the two or more respective positions may be selected by controlling a spacing between the two or more respective positions to enable determination of parallax disparity between a first image captured at a first position and a second image captured at a second position of the two or more positions. The UAV may determine a three-dimensional model corresponding to the scan target based in part on the determined parallax disparity of the two or more images including the first image and the second image.
-
公开(公告)号:US20210058331A1
公开(公告)日:2021-02-25
申请号:US17007618
申请日:2020-08-31
Applicant: Skydio, Inc.
Inventor: Jonathan Downey , Bernard J. Michini , Brian Richman
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
-
公开(公告)号:US20240278912A1
公开(公告)日:2024-08-22
申请号:US18435299
申请日:2024-02-07
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: B64C39/02 , B64D47/08 , B64U10/13 , B64U101/30 , G01S13/89 , G01S17/89 , G05D1/223 , G05D1/224 , G05D1/606 , G06F3/04817 , G06F3/04845 , G06F3/04847 , G06T17/05 , G06T17/10 , G06T19/00 , G06V20/10 , G06V20/13 , G06V20/17 , G06V20/64 , G08G5/00 , G08G5/04 , H04N5/272 , H04N13/204
CPC classification number: B64C39/024 , B64D47/08 , G01S13/89 , G01S17/89 , G05D1/223 , G05D1/224 , G05D1/606 , G06F3/04817 , G06F3/04845 , G06F3/04847 , G06T17/05 , G06T17/10 , G06T19/006 , G06V20/13 , G06V20/17 , G06V20/176 , G06V20/647 , G08G5/003 , G08G5/04 , H04N5/272 , B64U10/13 , B64U2101/30 , B64U2201/00 , B64U2201/20 , H04N13/204
Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
-
公开(公告)号:US12039875B2
公开(公告)日:2024-07-16
申请号:US17508624
申请日:2021-10-22
Applicant: Skydio, Inc.
Inventor: Mark Patrick Bauer , Brian Richman , Alan Jay Poole , Bernard J. Michini , Jonathan Anders Lovegren , Brett Michael Bethke , Hui Li
IPC: G08G5/00 , B64C39/02 , B64D47/08 , B64U10/13 , G01C21/20 , G05D1/00 , G06F3/048 , G06F3/04815 , G06F18/214 , G06F18/24 , G06Q10/0631 , G06Q10/1093 , G06Q50/16 , G06T17/05 , G06V20/10 , G06V20/58 , G08G5/02 , H04N5/445 , H04N7/18 , H04N23/63 , B64U101/00 , B64U101/30
CPC classification number: G08G5/0069 , B64C39/024 , B64D47/08 , G01C21/20 , G05D1/0016 , G05D1/0038 , G05D1/0044 , G05D1/0094 , G05D1/042 , G05D1/0653 , G06F3/04815 , G06F18/214 , G06F18/24 , G06Q10/063114 , G06Q10/1097 , G06Q50/16 , G06T17/05 , G06V20/176 , G06V20/58 , G08G5/0013 , G08G5/0034 , G08G5/0065 , G08G5/025 , H04N5/44504 , H04N7/183 , H04N7/185 , H04N23/631 , B64U10/13 , B64U2101/00 , B64U2101/30 , B64U2201/10 , B64U2201/20 , B64U2201/202 , G06F3/048 , G06T2215/16 , G06V2201/06
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
-
公开(公告)号:US12025983B2
公开(公告)日:2024-07-02
申请号:US18222786
申请日:2023-07-17
Applicant: SKYDIO, INC.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Bachrach , Adam Bry , Ryan David Kennedy , Himel Mondal , Quentin Allen Wah Yen Delepine
IPC: G06T17/00 , B64C39/02 , B64D31/06 , B64D47/08 , G05B13/02 , G05B17/02 , G05D1/00 , G06T7/55 , G06T7/73 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/60 , H04N23/695 , H04N23/90 , B64U10/13 , B64U101/30
CPC classification number: G05D1/0094 , B64C39/024 , B64D31/06 , B64D47/08 , G05B13/0265 , G05B17/02 , G05D1/0088 , G05D1/101 , G06T7/55 , G06T7/74 , G06T17/00 , G06T19/20 , G06V20/13 , G06V20/64 , H04N23/64 , H04N23/695 , H04N23/90 , B64U10/13 , B64U2101/30 , G06T2207/10032 , G06T2207/20221 , G06T2219/2004
Abstract: In some examples, an image of a scan target is presented in a user interface on a display associated with a computing device. The user interface receives at least one user input indicating at least one point in a perimeter or edge of a volume for encompassing the scan target presented in the image of the scan target. A graphical representation of the volume in relation to the image of the scan target is generated in the user interface. Information for defining a location of at least a portion of the volume in three-dimensional space is sent to an unmanned aerial vehicle (UAV) to cause, at least in part, the UAV to scan at least a portion of the scan target corresponding to the volume.
-
公开(公告)号:US20240113980A1
公开(公告)日:2024-04-04
申请号:US18467862
申请日:2023-09-15
Applicant: Skydio, Inc.
Inventor: Jonathan Downey , Bernard J. Michini , Brian Richman
CPC classification number: H04L47/25 , B64C39/024 , B64D41/00 , B64D47/00 , B64D47/08 , G01C23/00 , B64U2101/00
Abstract: An unmanned aerial vehicle (UAV) system includes one or more processors and one or more computer storage media storing instructions that when executed by the one or more processors, cause the one or more processors to perform operations that include obtaining flight information of the UAV; determining one or more modifications based on the flight information; and transmitting data messages over data buses based on the one or more modifications.
-
公开(公告)号:US11455894B2
公开(公告)日:2022-09-27
申请号:US16896066
申请日:2020-06-08
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: G08G5/00 , G06F3/04845 , G06F3/04817 , G06T17/05 , G06T19/00 , G06F3/04847 , B64C39/02 , B64D47/08 , G05D1/10 , G05D1/00 , G08G5/04 , G01S13/89 , G01S17/89 , H04N5/272 , G06T17/10 , G06V20/13 , G06V20/10 , H04N13/204
Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
-
公开(公告)号:US20210065563A1
公开(公告)日:2021-03-04
申请号:US16132284
申请日:2018-09-14
Applicant: Skydio, Inc.
Inventor: Mark Patrick Bauer , Brian Richman , Alan Jay Poole , Bernard J. Michini , Jonathan Anders Lovegren , Brett Michael Bethke , Hui Li
IPC: G08G5/00 , H04N7/18 , B64C39/02 , G05D1/00 , H04N5/232 , G06K9/00 , G08G5/02 , B64D47/08 , G05D1/06 , G05D1/04 , G06Q10/06 , G06Q10/10 , G06Q50/16 , G06T17/05 , G06K9/62 , H04N5/445 , G01C21/20 , G06F3/0481
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
-
公开(公告)号:US12235639B1
公开(公告)日:2025-02-25
申请号:US15891736
申请日:2018-02-08
Applicant: Skydio, Inc.
Inventor: Jonathan Downey , Mark Patrick Bauer , Edward Dale Steakley , Brian Richman , Bernard J. Michini
IPC: G05D1/00 , B64C39/02 , B64U50/19 , B64U50/34 , B64U101/30
Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media for unmanned aerial vehicle flight for performing an inspection of land, property, structures or other objects. Automated aerial surveys allow a UAV to obtain aerial data without human manual control of a UAV. For certain aerial surveys, a UAV is not capable of completing the survey without refueling, or exchanging out used batteries for fresh batteries. For such aerial surveys, a method and system is needed to allow an operator to automatically perform an aerial survey while determining battery usage and replacement. Also, in circumstances where manual control of the UAV is needed, contingency-based software controls may be needed.
-
-
-
-
-
-
-
-
-