Abstract:
An RFID transponder device has antenna terminals for coupling an antenna system to the device. A transmitter and a receiver are coupled to the antenna terminals. The device has at least one damping resistance connected to at least one of the antenna terminals. The at least one damping resistance is connected, depending on a voltage swing at the antenna terminals during a transmission burst period, either together with a serially connected switch in parallel to the antenna terminals that are coupled to the receiver, or together with a parallel connected switch between one of the antenna terminals and a terminal of the transmitter. A damping control is configured to activate the at least one damping resistance during a damping period after the transmission burst period by controlling the respective switch.
Abstract:
In an embodiment, a carrier signal generation circuit can be used for a Radio-frequency identification (RFID) transponder device. A frequency divider circuit has a first input to receive a first frequency signal, a second input to receive a division ratio signal, and an output to provide a carrier signal as a function of the first frequency signal and the division ratio signal. A phase difference circuit has a first input to receive an analog reader device carrier signal, a second input to receive a signal based on the first frequency signal and an output to provide a digital phase difference signal as a function of the reader device carrier signal and the signal based on the first frequency signal. A signal processor has an input coupled to the output of the phase difference circuit.
Abstract:
Embodiments provide a method for sending a message from an RFID transponder to a reader during a transmission frame using active load modulation, the method comprising. An encoded bit signal has a first logic level during first time segments within the transmission frame and a second logic level during second time segments within the transmission frame. The first time segments include an initial time segment of the transmission frame. A transmission signal is generated based on the encoded bit signal. The transmission signal is generated having a first phase depending on the first logic level during the first time segments, a second phase depending on the second logic level during the second time segments, and the second phase during a time interval preceding the transmission frame.
Abstract:
An actively transmitting tag detects a shift of a phase of an antenna signal (as) with regard to a phase of a transmitted signal (ts) in time intervals with a length of one half-period of a subcarrier, in which time intervals it transmits high-frequency wave packets with their phase being inverted according to a communication protocol at the ends of said half-periods. Generation of said wave packets is controlled by said phase shift in a way that said phase shift retains its absolute value at transitions into subsequent half-periods. Synchronizing the tag's transmission to a received interrogator signal carried out even during tag's transmitting enables the tag to transmit according to protocol ISO 14443 B by inverting a phase at transitions between said half-periods. Said synchronizing is carried out although no time window without a tag transmitting exists within the transmitted data frame.
Abstract:
An RFID transponder device has antenna terminals for coupling an antenna system to the device. A transmitter and a receiver are coupled to the antenna terminals. The device has at least one damping resistance connected to at least one of the antenna terminals. The at least one damping resistance is connected, depending on a voltage swing at the antenna terminals during a transmission burst period, either together with a serially connected switch in parallel to the antenna terminals that are coupled to the receiver, or together with a parallel connected switch between one of the antenna terminals and a terminal of the transmitter. A damping control is configured to activate the at least one damping resistance during a damping period after the transmission burst period by controlling the respective switch.
Abstract:
An RFID transponder device has antenna terminals for coupling an antenna system to the device. A transmitter and a receiver are coupled to the antenna terminals. The device has at least one damping resistance connected to at least one of the antenna terminals. The at least one damping resistance is connected, depending on a voltage swing at the antenna terminals during a transmission burst period, either together with a serially connected switch in parallel to the antenna terminals that are coupled to the receiver, or together with a parallel connected switch between one of the antenna terminals and a terminal of the transmitter. A damping control is configured to activate the at least one damping resistance during a damping period after the transmission burst period by controlling the respective switch.
Abstract:
An RFID transponder includes a coding and modulation unit that generates a transmission signal by modulating an oscillator signal with an encoded bit signal. During a first and a second time segment, the encoded bit signal assumes a first and a second logic level, respectively. The transmission signal includes a first signal pulse having a first phase within the first time segment and a second signal pulse having a second phase that is shifted with respect to the first phase by a predefined phase difference within the second time segment. The transmission signal is paused for a pause period between the first and the second signal pulse. The pause period is shorter than a mean value of a period of the first time segment and a period of the second time segment.
Abstract:
When communicating using active load modulation in a Radio Frequency Identification (RFID) system, a carrier signal having a carrier frequency is received from a reader device. In response, a modulated signal is generated and a burst of a sending signal is transmitted. The sending signal is decayed at the end of the burst.
Abstract:
A demodulator circuit receives an envelope signal for comparison against a switched reference signal that is generated as a function of the envelope signal and as a function of an output signal of the demodulator circuit. The switched reference signal is filtered by an RC filter prior to comparison. The output signal is dependent on a difference between the filtered switched reference signal and the envelope signal.
Abstract:
An RFID transponder includes a coding and modulation unit that generates a transmission signal by modulating an oscillator signal with an encoded bit signal. During a first and a second time segment, the encoded bit signal assumes a first and a second logic level, respectively. The transmission signal includes a first signal pulse having a first phase within the first time segment and a second signal pulse having a second phase that is shifted with respect to the first phase by a predefined phase difference within the second time segment. The transmission signal is paused for a pause period between the first and the second signal pulse. The pause period is shorter than a mean value of a period of the first time segment and a period of the second time segment.