Abstract:
A circuit includes a first input terminal, a second input terminal, a third input terminal and an output terminal. A first summation node adds signals at the first and third input terminals. A second summation node subtracts signals at the second and third input terminals. A selector selects between the added signals and subtracted signals in response to a selection signal. The output of the selector is integrated to generate an integrated signal. The integrated signal is compared by a comparator to a threshold, the comparator generating an output signal at the output terminal having a first level and a second level. Feedback of the output signal produces the selection signal causing the selector to select the added signals in response to the first level of the output signal and causing the selector to select the subtracted signals in response to the second level of the output signal.
Abstract:
A sensing element integrated in a semiconductor material chip has a sensing diode of a junction type configured to be reverse biased so that its junction capacitance is sensitive to the local temperature. A reading stage is coupled to the sensing element for detecting variations of the junction capacitance of the sensing diode and outputting a reading acquisition signal proportional to the local temperature of the sensing diode. The sensing diode has a cathode terminal coupled to a biasing node and an anode terminal coupled to a first input of the reading stage. The biasing node receives a voltage positive with respect to the first input of the reading stage for keeping the sensing diode reverse biased.
Abstract:
A sensing element integrated in a semiconductor material chip has a sensing diode of a junction type configured to be reverse biased so that its junction capacitance is sensitive to the local temperature. A reading stage is coupled to the sensing element for detecting variations of the junction capacitance of the sensing diode and outputting a reading acquisition signal proportional to the local temperature of the sensing diode. The sensing diode has a cathode terminal coupled to a biasing node and an anode terminal coupled to a first input of the reading stage. The biasing node receives a voltage positive with respect to the first input of the reading stage for keeping the sensing diode reverse biased.
Abstract:
A pressure sensor includes a body made of semiconductor material having a first type of conductivity and a pressure-sensitive structure having the first type of conductivity defining a suspended membrane. One or more piezoresistive elements having a second type of conductivity (P) are formed in the suspended membrane. The piezoresistive elements form, with the pressure-sensitive structure, respective junction diodes. A temperature sensing method includes: generating a first current between conduction terminals common to the junction diodes; detecting a first voltage value between the common conduction terminals when the first current is supplied; and correlating the detected first voltage value to a value of temperature of the diodes. The temperature value thus calculated can be used for correcting the voltage signal generated at output by the pressure sensor when the latter is operated for sensing an applied outside pressure which deforms the suspended membrane.
Abstract:
A thermally-isolated-metal-oxide-semiconducting (TMOS) sensor has inputs coupled to first and second nodes to receive first and second bias currents, and an output coupled to a third node. A tail has a first conduction terminal coupled to the third node and a second conduction terminal coupled to a reference voltage. A control circuit applies a control signal to a control terminal of the tail transistor based upon voltages at the first and second nodes so that a common mode voltage at the first and second nodes is equal to a reference common mode voltage. A differential current integrator has a first input terminal coupled to the second node and a second input terminal coupled to the first node, and provides an output voltage indicative of an integral of a difference between a first output current at the first input terminal and a second output current at the second input terminal.
Abstract:
A converter circuit includes an analog-to-digital signal conversion path. An input port receives an analog input signal having an offset, and an output port delivers a digital output signal quantized over M levels. The digital output signal is sensed by a digital-to-analog feedback path, which includes a digital-to-analog converter applying to the input port an analog feedback signal produced as a function of an M-bit digital word under control of a two-state signal having alternating first and second states. M-bit digital word generation circuitry coupled to the digital-to-analog converter and sensitive to the two-state signal produces, alternately, during the first states, a first M-bit digital word, which is a function of the digital output signal quantized over M levels, and, during the second states, a second M-bit digital word, which is a function a correction value of the offset in the analog input signal.
Abstract:
A thermally-isolated-metal-oxide-semiconducting (TMOS) sensor has inputs coupled to first and second nodes to receive first and second bias currents, and an output coupled to a third node. A tail has a first conduction terminal coupled to the third node and a second conduction terminal coupled to a reference voltage. A control circuit applies a control signal to a control terminal of the tail transistor based upon voltages at the first and second nodes so that a common mode voltage at the first and second nodes is equal to a reference common mode voltage. A differential current integrator has a first input terminal coupled to the second node and a second input terminal coupled to the first node, and provides an output voltage indicative of an integral of a difference between a first output current at the first input terminal and a second output current at the second input terminal.
Abstract:
An amplification interface includes a drain of a first FET connected to a first node, a drain of a second FET connected to a second node, and sources of the first and second FETs connected to a third node. First and second bias-current generators are connected to the first and second nodes. A third FET is connected between the third node and a reference voltage. A regulation circuit drives the gate of the third FET to regulate the common mode of the voltage at the first node and the voltage at the second node to a desired value. A current generator applies a correction current to the first and/or second node. A differential current integrator has a first and second inputs connected to the second and first nodes. The integrator supplies a voltage representing the integral of the difference between the currents received at the second and first inputs.
Abstract:
A touchscreen resistive sensor includes a network of resistive sensor branches coupled to a number of sensor nodes arranged at touch locations of the touchscreen. A test sequence is performed by sequentially applying to each sensor node a reference voltage level, jointly coupling to a common line the other nodes, sensing a voltage value at the common line, and declaring a short circuit condition as a result of the voltage value sensed at the common line reaching a short circuit threshold. A current value level flowing at the sensor node to which the reference voltage level is applied is sensed and a malfunction of the resistive sensor branch coupled with the sensor node to which a reference voltage level is applied is generated as a result of the current value sensed at the sensor node reaching an upper threshold or lower threshold.
Abstract:
A pressure sensor includes a body made of semiconductor material having a first type of conductivity and a pressure-sensitive structure having the first type of conductivity defining a suspended membrane. One or more piezoresistive elements having a second type of conductivity (P) are formed in the suspended membrane. The piezoresistive elements form, with the pressure-sensitive structure, respective junction diodes. A temperature sensing method includes: generating a first current between conduction terminals common to the junction diodes; detecting a first voltage value between the common conduction terminals when the first current is supplied; and correlating the detected first voltage value to a value of temperature of the diodes. The temperature value thus calculated can be used for correcting the voltage signal generated at output by the pressure sensor when the latter is operated for sensing an applied outside pressure which deforms the suspended membrane.