Abstract:
The present invention provides deterioration analysis method which allows a detailed analysis of deterioration, especially deterioration of surface conditions, of a polymer material. The present invention relates to a deterioration analysis method, including irradiating a polymer material with high intensity X-rays, and measuring X-ray absorption while varying the energy of the X-rays, to analyze deterioration of the polymer.
Abstract:
The present invention provides deterioration analysis method which allows a detailed analysis of deterioration, especially deterioration of surface conditions, of a polymer material. The present invention relates to a deterioration analysis method, including irradiating a polymer material with high intensity X-rays, and measuring X-ray absorption while varying the energy of the X-rays, to analyze deterioration of the polymer.
Abstract:
For each of one or a plurality of types of samples, a database is constructed in which a sample identification tag and data belonging to at least two types of categories out of Categories (1), (2), and (3) are stored in association with each other. Data to be used as training data in supervised learning is selected from the database. At this time, one or a plurality of types of data is selected as an explanatory variable from one of the categories. Further, one or a plurality of types of data is selected as an objective variable from the other category. Then, training data is generated in which data corresponding to the selected explanatory variable is served as input and data corresponding to the selected objective variable is served as ground truth output. Category (1) is a plurality of types of samples relating to a production method of the sample, Category (2) is a plurality of types of samples acquired by analyzing a sample by one or a plurality of types of analyzers, and Category (3) is a plurality of types of physical property data that are information representing sample characteristics.
Abstract:
The pneumatic tire of the present invention characterized by comprising: bead cores, a carcass ply, an inner liner and a tread having a volume of the low density region of 35% or more, at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5% or less at elongation by an applied stress of 3.0 MPa and a glass transition temperature of −20° C. or lower, and the crosslinked rubber composition of the present invention having a volume of the low density region of 35% or more at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5 or less at elongation by an applied stress of 3.0 MPa and a glass transition temperature of −20° C. or lower are excellent in abrasion resistance.
Abstract:
A pneumatic tire includes bead cores, a carcass ply, an inner liner and the tread, and the crosslinked rubber composition, of the present invention, wherein the tread and the crosslinked rubber composition have a volume of the low density region of 35% or more at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5 or less at elongation by an applied stress of 3.0 MPa and a ratio of 40% by mass or more of a component having a weight-average molecular weight of not less than 1,000,000 in a molecular weight distribution measured by gel permeation chromatography are excellent in abrasion resistance.
Abstract:
Provided are a rubber composition for tires which achieves both abrasion resistance and processability while maintaining fuel economy, and a pneumatic tire including the rubber composition. A rubber composition for tires, containing an organosilicon compound represented by the average compositional formula (I) below having a ratio of the number of sulfur atoms to the number of silicon atoms of 1.0 to 1.5, wherein x represents the average number of sulfur atoms; m represents an integer of 6 to 12; and R1 to R6 are the same or different and each represent a C1-C6 alkyl or alkoxy group, at least one of R1 to R3 and at least one of R4 to R6 are the alkoxy groups, and two or more of the alkyl or alkoxy groups for R1 to R6 may be joined to form a ring.
Abstract:
A method for evaluating the crosslink concentration in a crosslinked rubber is provided. The present invention relates to a method for evaluating the crosslink concentration in a crosslinked rubber by small-angle X-ray scattering or small-angle neutron scattering using measurement samples prepared by swelling the crosslinked rubber to different degrees of swelling.
Abstract:
The present invention provides a method for evaluating energy loss in a polymeric material, wherein the method provides sufficient evaluation of the difference in performance between samples with excellent measurement accuracy; a method for evaluating chipping resistance of a polymeric material, wherein the method provides evaluation in a short period of time and at low cost with excellent measurement accuracy; and a method for evaluating abrasion resistance of a polymeric material, wherein the method provides sufficient evaluation of the difference in performance between samples with excellent measurement accuracy. The present invention relates to methods for evaluating energy loss, chipping resistance, and abrasion resistance of a polymeric material, and the methods include irradiating the polymeric material with X-rays or neutrons to perform X-ray scattering measurement or neutron scattering measurement.