Abstract:
A performance evaluation method for elastic material including rubber or elastomer, the method includes: a step of applying a strain to a test piece made of an elastic material to form at least one low-density portion inside the test piece; after forming the low-density portion, a step of obtaining projected images of the test piece by irradiating the test piece with X-rays at a predetermined first time and at a second time after the first time; a step of identifying the low-density portion based on the projected images at the first time; a step of identifying the low-density portion based on the projected images at the second time; a step of identifying a volume change of the at least one low-density portion between the first time and the second time; and a step of outputting the volume change as one of indicators of performance of the elastic material.
Abstract:
Provided is an evaluation method that provides detailed information on the crosslink densities in sulfur-containing polymer composite materials. The present invention relates to a method of measuring crosslink densities in a sulfur-containing polymer composite material, the method including: a measurement step of irradiating the sulfur-containing polymer composite material with high intensity X-rays and measuring an X-ray absorption spectrum of the composite material while varying the energy of the X-rays; a visualization step of determining the three-dimensional structure of sulfur atoms in the sulfur-containing polymer composite material by the reverse Monte Carlo method from the X-ray absorption spectrum; and a calculation step of calculating, from the three-dimensional structure of sulfur atoms, a crosslink density for each number of sulfur atoms bonded.
Abstract:
A performance evaluation method for elastic material including rubber or elastomer, the method includes a step of applying a strain to a test piece made of the elastic material to form at least one void inside the test piece, a step of obtaining projected images of the test piece by irradiating the test piece with X-rays at a plurality of times after the at least one void is formed, and a step of obtaining a volume change of the at least one void between the plurality of times based on the projected images, as one of indexes of performance.
Abstract:
The present invention provides a deterioration analysis method capable of analyzing in detail deterioration of a polymer material, and in particular deterioration in the surface condition of a polymer material with low conductivity. The present invention relates to a deterioration analysis method including irradiating a polymer material with a metal coating having a thickness of 100 Å or less formed thereon, with high intensity X-rays, and measuring X-ray absorption while varying the energy of the X-rays, to analyze deterioration of the polymer.
Abstract:
Provided is a method for estimating abrasion resistance of polymer composite materials. The present disclosure relates to a method for estimating abrasion resistance, the method including: irradiating a sulfur compound-containing polymer composite material with high intensity X-rays; measuring an X-ray absorption in a small region of the polymer composite material while varying an energy of the X-rays, whereby a dispersion state and a chemical state of the sulfur compound are analyzed; and quantifying an inhomogeneous state of cross-link degradation in the polymer composite material based on the dispersion state and the chemical state.
Abstract:
The pneumatic tire of the present invention characterized by comprising: bead cores, a carcass ply, an inner liner disposed at an inner side than the carcass ply in a direction of a tire diameter, and a tread disposed at an outer side than the carcass ply in a direction of a tire diameter and having a volume of the low density region of 35% or more at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5% or less at elongation by an applied stress of 3.0 MPa and a filler dispersibility index ΔG* shown by the following equation (I) of 3 or less and the crosslinked rubber composition having a volume of the low density region of 35% or more at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5 or less at elongation by an applied stress of 3.0 MPa and a filler dispersibility index ΔG* shown by the following equation (I) of 3 or less are excellent in abrasion resistance. ΔG*=(G*(4%)−G*(256%))/G*(256%) (I) In the equation (I), G* (n %) indicates a shear modulus when an n % strain is applied.
Abstract:
The pneumatic tire characterized by comprising the tread and the crosslinked rubber composition, of the present invention, wherein the tread and the crosslinked rubber composition comprise two or more kinds of rubber components and a filler and have a volume of the low density region of 35% or more, a volume of the void portion of 7.5 or less and a filler distribution D represented by the following formula (I) of 2.0 or less are excellent in abrasion resistance. D=(A1/B1)/(A0/B0) (I) In the formula (I), A1 represents a volume fraction of a rubber component A in a filler gel, B1 represents a volume fraction of a rubber component B in a filler gel, A0 represents a volume fraction of a compounded rubber component A, B0 represents a volume fraction of a compounded rubber component B.
Abstract:
To observe an elastic material under a dynamically deformed state. [Solution] A method for observing deformation of an elastic material 1 including rubber or elastomer, and an apparatus for capturing a projection image of the elastic material suitably used therefor. The observing method includes: a projection image obtaining step S1 of capturing a projection image of at least a part of the elastic material 1, from a direction perpendicular to an arbitrary axis of the elastic material 1, at a plurality of capture positions P around the axis; a three-dimensional image constructing step S2 of constructing a three-dimensional image 51 of the elastic material 1 from the projection images, and a step of observing the three-dimensional image 51. The projection image obtaining step S1 comprises: a deforming step S12 of deforming the elastic material 1 in predetermined cycles; a signal output step S13 of outputting an capture signal St at a predetermined specific time point during one cycle; and a capturing step S14 of capturing the projection image of the elastic material 1 based on the capture signal St. The deforming step S12, the signal output step S13 and the capturing step S14 are performed at each of the capture positions.
Abstract:
Provided is a method for estimating abrasion resistance and fracture resistance by highly accurately analyzing aggregation (dispersion) of sulfur-based materials in polymer composite materials. The present invention relates to a method for estimating abrasion resistance and fracture resistance, the method including: irradiating a polymer composite material containing at least one sulfur-based material selected from the group consisting of sulfur and sulfur compounds with high intensity X-rays; measuring X-ray absorption of a measurement region of the polymer composite material while varying the energy of the X-rays; calculating areas of spots having a high sulfur concentration equal to or greater than a predetermined level in a two-dimensional mapping image of sulfur concentration of the measurement region; and estimating abrasion resistance and fracture resistance based on the areas.
Abstract:
A pneumatic tire includes bead cores, a carcass ply, an inner liner, and a tread having a volume of the low density region of 35% or more at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5% or less at elongation by an applied stress of 3.0 MPa and a hardness of 65 or more and the crosslinked rubber composition of the present invention having a volume of the low density region of 35% or more at elongation by an applied stress of 1.5 MPa, a volume of the void portion of 7.5 or less at elongation by an applied stress of 3.0 MPa and a hardness of 65 or more are excellent in abrasion resistance.