Abstract:
The embodiments herein are generally directed to using a current-mode CBC circuit to maintain a voltage bias setting at a receiver when performing capacitive sensing. To do so, the CBC circuit may compensate for the change in voltage at a receiver by providing a current at the input of the receiver. Instead of using a passive CBC capacitor for each receiver, the input device may use a single CBC capacitor and a plurality of current mirrors to source and sink the current required to correct the input voltage at a plurality of receivers. As a result, the current-mode CBC circuit includes only one passive capacitor (or bank of capacitors) and a plurality of current mirrors which may provide space and cost benefits relative to a CBC circuit that uses a passive capacitor (or bank of capacitors) for each receiver channel.
Abstract:
Embodiments described herein include an input device, processing system, and method of performing capacitive sensing using an input device comprising a first plurality of sensor electrodes, a second plurality of sensor electrodes, and a plurality of display electrodes. The method comprises, during a first period, driving the first plurality of sensor electrodes with a first absolute capacitive sensing signal to receive first resulting signals, and driving the second plurality of sensor electrodes and the plurality of display electrodes with a first guarding signal. Each of the first plurality of sensor electrodes comprises at least one common electrode of a display, and wherein each common electrode is configured to be driven for display updating and for capacitive sensing.
Abstract:
This disclosure generally provides an input device that includes a matrix sensor that includes a plurality of sensor electrodes arranged in rows on a common surface or plane. The input device may include a plurality of sensor modules coupled to the sensor electrodes that measure capacitive sensing signals corresponding to the electrodes. Instead of measuring sensor electrodes that are in the same column, the embodiments herein simultaneously measure capacitive sensing signals on at least two sensor electrodes that are in the same row. In one example, the sensor electrodes in the row being measured are spaced the same distance from a side of a substrate coupling the electrodes to the sensor modules and may have approximately the same electrical time constant.
Abstract:
Embodiments described herein include an input device with a plurality of capacitive sensor electrodes configured to receive a signal. The input device also includes a processing system coupled to the plurality of capacitive sensor electrodes. The processing system includes an analog front end (AFE). The AFE includes an anti-aliasing filter comprising a continuous time analog infinite impulse response (IIR) filter configured to filter out interference from the received signal at frequencies higher than a signal frequency of the processing system to produce an anti-aliased signal. The AFE also includes a charge integrator configured to integrate the anti-aliased signal.
Abstract:
Embodiments of the invention are generally directed to improving the slew rate of an amplifier as the amplifier charges or discharges a capacitive load. In one embodiment, the amplifier is coupled to a slew-enhancing circuit which uses a control signal from the amplifier to aid the amplifier when charging or discharging the load. For example, the control signal may be an internal voltage used by the amplifier to control circuit elements within the amplifier. By routing the control signal to the slew-enhancing circuit, the control signal biases the circuit elements within the slew-enhancing circuit to source a boost current when charging the capacitive load or sink the boost current when discharging the capacitive load.