Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
A light emitting diode including a first electrode; a second electrode overlapping the first electrode; an emission layer positioned between the first electrode and the second electrode; and an electron transporting region positioned between the second electrode and the emission layer, wherein the electron transporting region includes a tellurium compound of a rare earth metal.
Abstract:
A light-emitting diode includes a first electrode, a second electrode overlapping the first electrode, a first emission layer and a second emission layer provided between the first electrode and the second electrode, and a first charge generating layer provided between the first emission layer and the second emission layer, the first charge generating layer including a p-type charge generating layer and an n-type charge generating layer. The n-type charge generating layer may include an organic material and an inorganic material doped to the organic material, and the inorganic material may include a lanthanide metal or an alkali earth metal, and an alkali halide.
Abstract:
A light emitting diode includes a first electrode overlapping a second electrode, an emission layer between the first and second electrodes. a first hole injection layer and a second hole injection layer between the first electrode and the emission layer, and a first hole transporting layer between the first hole injection layer and the second hole injection layer. Each of the first and second hole injection layers includes an inorganic dipole material. At least one of the first hole injection layer or the second hole injection layer including an organic material.
Abstract:
An exemplary embodiment of the present disclosure provides a light emitting diode including: a first electrode; a second electrode configured to overlap the first electrode; an emission layer between the first electrode and the second electrode; and an electron-injection layer between the emission layer and the first electrode, wherein the electron-injection layer includes a compound XIn, in XIn the subscript n is an integer which is in a range of 1 to 3, and X includes a lanthanide element.
Abstract:
An organic light emitting element, includes a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including an oxide having a relative dielectric constant of 10 or more and a metal having a work function of 4.0 eV or less.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
A light-emitting diode includes a first electrode, a second electrode, a light-emitting layer, and a hole transfer layer. The light-emitting layer is disposed between the first electrode and the second electrode. The hole transfer layer is disposed between the light-emitting layer and the second electrode. The hole transfer layer includes an organic material. At least one of tellurium or a telluride compound of a transition metal is doped in the organic material included in the hole transfer layer.
Abstract:
A light emitting diode and a light emitting diode display, the light emitting diode including a first electrode; a second electrode overlapping the first electrode; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, wherein the electron injection layer includes a lanthanide element, an alkali meta first element, and a halogen second element, and wherein the first element and the second element are included in the electron injection layer in an amount of 1 vol % to 20 vol %, based on a total volume of a material including the lanthanide element, the first element, and the second element.
Abstract:
A light emitting element includes a first electrode, a second electrode overlapping the first electrode, and an emission layer between the first electrode and the second electrode. The emission layer includes a quantum well that includes a first layer and a second layer, each having a different band gap. The first layer includes magnesium, and the second layer includes zinc. The first layer and the second layer are amorphous.