Abstract:
An organic light-emitting diode display is disclosed. The display includes a scan line formed over a substrate and configured to carry a scan signal. First and second data lines are adjacent to each other and crossing the scan line. The first and second data lines are configured carry a data voltage. A driving voltage line crossing the scan line is configured to carry a driving voltage, and a switching transistor is electrically connected to the scan line and the data line and includes a switching drain electrode configured to output the data voltage. A driving transistor includes a driving gate electrode and a driving source electrode electrically connected to the switching drain electrode. An OLED is electrically connected to the driving drain electrode of the driving transistor, and a connector is connected to the driving gate electrode of the driving transistor and interposed between the first and second data lines.
Abstract:
An organic light emitting diode display includes: a substrate; a scan line, a first emission control line, and a second emission control line on the substrate; a data line and a driving voltage line crossing the scan line; a switching transistor connected to the scan line and the data line and including a switching drain electrode; a driving transistor including a driving source electrode connected to the switching drain electrode; an organic light emitting diode electrically connected to a driving drain electrode of the driving transistor; an operation control transistor to transmit a driving voltage to the driving transistor; and a first emission control transistor and second emission control transistor to transmit the driving voltage from the driving transistor to the organic light emitting diode, wherein the first emission control line and the second emission control line partially overlap each other.
Abstract:
A fingerprint sensor includes: a thin film transistor disposed on a substrate; a first insulating layer disposed on the thin film transistor; a first sensing electrode disposed on the first insulating layer and connected to the thin film transistor; a second insulating layer disposed on the first sensing electrode and including an opening exposing the first sensing electrode; a sensing semiconductor layer disposed in the opening of the second insulating layer and on the first sensing electrode, and including an N-type semiconductor layer, an I-type semiconductor layer, and a P-type semiconductor layer, and a second sensing electrode disposed on the sensing semiconductor layer. An upper surface of the sensing semiconductor layer and an upper surface of the second insulating layer are coplanar.
Abstract:
A display device includes a display panel including a pixel coupled to first to fourth scan lines, an emission control line, and a data line, a scan driver which supplies a first scan signal to the first scan line, a second scan signal to the second scan line, a third scan signal to the third scan line, and a fourth scan signal to the fourth scan line, an emission driver which supplies an emission control signal to the emission control line, a data driver which supplies a data signal to the data line, and a timing controller which controls the scan driver, the emission driver, and the data driver. Each of the second and third scan signals has a gate-on level during a partial period of one frame, and is maintained at a gate-off level during a remaining period of the one frame, other than the partial period.
Abstract:
An image display system includes a graphic processor which generates an image signal, a control signal, and a variable frequency signal; and a display device which displays an image at a frame frequency corresponding to the variable frequency signal from the graphic processor. The display device includes pixels connected to emission control lines, data lines, and scan lines; a controller which provides reference data including information on reference cycles, which are cycles in which an emission control start signal is output, to the graphic processor, outputs the emission control start signal based on the control signal, and adjusting an output timing of a scan start signal based on the variable frequency signal; an emission driver which supplies emission control signals to the emission control lines based on the emission control start signal; and a scan driver which supplies scan signals to the scan lines based on the scan start signal.
Abstract:
A display device driving method includes: providing a reference voltage for compensating a threshold voltage of a driving transistor in a pixel; and providing a data signal to the pixel, wherein providing the reference voltage, and providing the data signal to the pixel are performed in a first frame period, and a second frame period successive to the first frame period, wherein the display device driving method further comprises providing a compensation signal generated by comparing a data signal with a reference voltage provided in a previous frame period of each frame period to the pixel before providing the reference voltage is ended.
Abstract:
Provided herein may be a display device. The display device may include a substrate, a base layer, a first protrusion and a second protrusion. The substrate may include a pixel area, and a peripheral area surrounding the pixel area. The base layer may be disposed on the pixel area, and include a plurality of island patterns on which respective pixels are provided, and a plurality of bridge patterns coupling the adjacent island patterns to each other, the plurality of island patterns and the plurality of bridge patterns disposed on the first area. The first protrusion and the second protrusion may be provided on the base layer.
Abstract:
Provided is a liquid crystal display panel including a thin-film transistor (TFT) array substrate and a first phase difference film. A liquid crystal layer is disposed between the TFT array substrate and the first phase difference film. A second phase difference film is disposed on the first phase difference film. A phase retardation value of the first phase difference film in a thickness direction is in a range of from about 100 nm to about 300 nm.
Abstract:
A display apparatus includes an optical module, a display panel and a display panel driver. The display panel is disposed on the optical module. The display panel driver is configured to drive the display panel. The display panel includes a first display area including at least a portion overlapping with the optical module and a second display area not overlapping with the optical module in a plan view. The first display area includes pixels having a first pixel structure. The second display area includes pixels having a second pixel structure different from the first pixel structure.
Abstract:
A display device includes a first transistor including a first electrode connected to a first power line, a second electrode connected to a third node, and a gate electrode connected to a first node, a first capacitor formed between the first power line and a second node, a second capacitor formed between the first node and the second node, an emission transistor including a first electrode connected to the third node, a second electrode, and a gate electrode connected to an emission control line, and a light emitting element connected to the second electrode of the emission transistor and a second power line.