Abstract:
A display device includes a first pixel. The first pixel includes a first light emitting unit electrically connected between a first power line and a second power line. A first driving transistor is electrically connected between the first power line and the first light emitting unit, and controls a current flowing into the first light emitting unit, based on a first data signal from a first data line to a gate electrode. A first initialization transistor is electrically connected between the gate electrode of the first driving transistor and a third power line. A first switching transistor is electrically connected between a first electrode of the first light emitting unit and a first sub-power line. The first light emitting unit includes light emitting elements. The first driving transistor includes a first semiconductor material, and the first initialization transistor includes a second semiconductor material different from the first semiconductor material.
Abstract:
A fingerprint sensor and a display device include a substrate. A circuit element layer is disposed on a first surface of the substrate and includes a semiconductor layer, conductive layers and at least one opening portion. A light emitting element layer is disposed on the circuit element layer and includes at least one light emitting element. A sensor layer is disposed on a second surface of the substrate and includes at least one light sensor corresponding to the opening portion. The opening portion is defined by non-overlapping of the semiconductor layer and the conductive layers, the opening portion has a closed loop shape in plan view, and at least a portion of the closed loop shape includes a curve, or an internal angle of the at least a portion of the closed loop shape is an obtuse angle.
Abstract:
A fingerprint sensor and a display device include a substrate. A circuit element layer is disposed on a first surface of the substrate and includes a semiconductor layer, conductive layers and at least one opening portion. A light emitting element layer is disposed on the circuit element layer and includes at least one light emitting element. A sensor layer is disposed on a second surface of the substrate and includes at least one light sensor corresponding to the opening portion. The opening portion is defined by non-overlapping of the semiconductor layer and the conductive layers, the opening portion has a closed loop shape in plan view, and at least a portion of the closed loop shape includes a curve, or an internal angle of the at least a portion of the closed loop shape is an obtuse angle.
Abstract:
A display device includes a display pixel and a sensor pixel. The display pixel includes a light-emitting element including a first pixel electrode. The display pixel further includes a pixel circuit electrically coupled to the light-emitting element. The sensor pixel includes a sensor electrode overlapping the first pixel electrode. The sensor pixel further includes a sensor circuit electrically coupled to the sensor electrode. The first pixel electrode includes a first opening in a region overlapping the sensor electrode.
Abstract:
A liquid crystal display includes a first substrate including first to fourth color pixel areas, first to fourth thin film transistors disposed on the first substrate, and first to fourth pixel electrodes connected to the first to fourth thin film transistors. Each of the first to fourth pixel electrodes includes a cross stem portion including a horizontal stem portion and a vertical stem portion crossing the horizontal stem portion, and minute branch portions extending from the cross stem portion at a predetermined angle with respect to a horizontal direction. A third angle of the minute branch portions of the third pixel electrode is greater than each of first and second angles of the minute branch portions of the respective first and second pixel electrodes. Each of the first and second angles is greater than a fourth angle of the minute branch portions of the fourth pixel electrode.
Abstract:
A liquid crystal display device that allows efficient luminance control is presented. The device includes: first, second, and third color pixel areas; a first substrate and a second substrate; a first color filter disposed in the first color pixel area on the first substrate or the second substrate; a second color filter disposed in the second color pixel area on the first substrate or the second substrate; a third color filter disposed in the third color pixel area on the first substrate or the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first color pixel area includes a first transparent region at which the first color filter is not disposed, and a ratio of the first transparent region of the first color pixel area to the first color pixel area is in a range of 1/1000 to 1/2, inclusive.
Abstract:
In an exemplary display device of the present invention, a first microcavity filled with liquid crystal molecules is disposed on a substrate. A roof layer is disposed on an upper side and two facing first sides of the first microcavity. The two facing first sides are arranged in a first direction. A support member is disposed on one of two facing second sides of the first microcavity. The two facing second sides are arranged in a second direction crossing the first direction. An overcoat is disposed on the roof layer and the other of the two facing second sides of the first microcavity. The support member having a column shape is connected to the roof layer.
Abstract:
A display device is provided. A substrate includes a thin film transistor. A pixel electrode is connected to the thin film transistor. A common electrode is formed on the pixel electrode. A microcavity including liquid crystal molecules is interposed between the pixel electrode and the common electrode. A roof layer is formed on the common electrode. The roof layer includes at least one protrusion. A support member is formed under the at least one protrusion and in a column shape. The support member is surrounded by the liquid crystal molecules. An overcoat is formed on the roof layer and a side of the microcavity.
Abstract:
A display device may include a first subpixel electrode; a first roof layer; a first liquid crystal layer disposed between the first subpixel electrode and the first roof layer; and a first support member overlapping a first end portion of the first roof layer in a first direction. The display device may further include a second subpixel electrode immediately neighboring the first subpixel electrode; a second roof layer; a second liquid crystal layer disposed between the second subpixel electrode and the second roof layer; and a second support member overlapping a first end portion of the second roof layer in the first direction. The first end portion of the first roof layer and the first end portion of the second roof layer may be disposed between a second end portion of the first roof layer and a second end portion of the second roof layer.
Abstract:
A display device includes a substrate, first and second transistors on the substrate, a first electrode connected to one of the first and second transistors, a second electrode facing the first electrode, and a light emission member between the first and second electrodes, where the first transistor includes a first channel including a polycrystalline semiconductor member on the substrate, a first source electrode and a first drain electrode at respective opposite sides of the first channel, a first gate electrode overlapping the first channel, and a first insulating layer covering the first gate electrode, the second transistor includes a second gate electrode on the first insulating layer, a second channel including an oxide semiconductor member on the second gate electrode, second source and drain electrodes on the second channel, and an external light blocking member on the second source and drain electrodes and overlapping the second channel.