Abstract:
A thin film transistor (TFT) array substrate and an organic light-emitting diode display employing the same are disclosed. In one aspect, the substrate includes at least one TFT, the TFT including a substrate and a semiconductor pattern comprising a source region, a channel region, and a drain region. The TFT also includes a gate insulating layer covering the semiconductor pattern, a side gate electrode electrically insulated from the semiconductor pattern and formed over at least one side of the channel region, and a top gate electrode formed over the gate insulating layer so as to partially overlap the semiconductor pattern, the side gate electrode and the top gate electrode electrically connected to each other.
Abstract:
An organic light-emitting display apparatus including a substrate; a thin-film transistor (TFT) arranged on the substrate; a black matrix located between the substrate and the TFT; a pixel electrode, which is located between the substrate and the TFT and having edge portions covered by the black matrix; an insulation layer, which covers the TFT and opens the top surface of the pixel electrode; an organic emission layer, which is arranged on the pixel electrode; and a counter electrode, which is arranged on the organic emission layer.
Abstract:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
Abstract:
A semiconductor device including a semiconductor layer, a first electrode, and a second electrode. The semiconductor layer includes a first source region, a first drain region, a second source region, and a second drain region connected to a channel region. The first gate electrode is disposed below the semiconductor layer. The first gate electrode is insulated from the semiconductor layer. The first gate electrode at least partially overlaps the shared channel region. The second gate electrode is disposed above the semiconductor layer. The second gate electrode is insulated by a second gate insulating layer. The second gate electrode at least partially overlaps the channel region.
Abstract:
A method of manufacturing a display device includes forming an electrode layer including a first metallic element on a substrate; sequentially forming an insulating layer including a first material and a photosensitive pattern layer including a first pattern on the electrode layer; forming a plurality of fine patterns including a first layer that includes the first material and a second layer by etching the photosensitive pattern layer and the insulating layer; and forming a plurality of scattering bumps by removing the second layer of each of the plurality of fine patterns.
Abstract:
An organic light-emitting display apparatus including a substrate; a thin-film transistor (TFT) arranged on the substrate; a black matrix located between the substrate and the TFT; a pixel electrode, which is located between the substrate and the TFT and having edge portions covered by the black matrix; an insulation layer, which covers the TFT and opens the top surface of the pixel electrode; an organic emission layer, which is arranged on the pixel electrode; and a counter electrode, which is arranged on the organic emission layer.
Abstract:
A thin film transistor (TFT) array substrate and an organic light-emitting diode display employing the same are disclosed. In one aspect, the substrate includes at least one TFT, the TFT including a substrate and a semiconductor pattern comprising a source region, a channel region, and a drain region. The TFT also includes a gate insulating layer covering the semiconductor pattern, a side gate electrode electrically insulated from the semiconductor pattern and formed over at least one side of the channel region, and a top gate electrode formed over the gate insulating layer so as to partially overlap the semiconductor pattern, the side gate electrode and the top gate electrode electrically connected to each other.