摘要:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
摘要:
A method of manufacturing a thin film transistor substrate includes forming a semiconductor pattern on a substrate, wherein the semiconductor pattern includes a first area, a second area, and a third area, wherein the second area and the third area are located on each side of the first area; forming an insulating layer on the substrate to cover the semiconductor pattern; forming a metal pattern layer on the insulating layer using a first photosensitive pattern; doping the semiconductor pattern with first impurities using the first photosensitive pattern; forming a gate electrode by patterning the metal pattern layer using a second photosensitive pattern; and doping the semiconductor pattern with second impurities having a lower concentration than the first impurities.
摘要:
An organic light-emitting display apparatus including a substrate; a thin-film transistor (TFT) arranged on the substrate; a black matrix located between the substrate and the TFT; a pixel electrode, which is located between the substrate and the TFT and having edge portions covered by the black matrix; an insulation layer, which covers the TFT and opens the top surface of the pixel electrode; an organic emission layer, which is arranged on the pixel electrode; and a counter electrode, which is arranged on the organic emission layer.
摘要:
An organic light-emitting display apparatus including a substrate; a thin-film transistor (TFT) arranged on the substrate; a black matrix located between the substrate and the TFT; a pixel electrode, which is located between the substrate and the TFT and having edge portions covered by the black matrix; an insulation layer, which covers the TFT and opens the top surface of the pixel electrode; an organic emission layer, which is arranged on the pixel electrode; and a counter electrode, which is arranged on the organic emission layer.
摘要:
A color-converting substrate includes a color-converting part including a wavelength-converting particle configured to change a wavelength of an incident light to emit a light having a color different from the incident light, a color filter pattern filtering the light emitted from the color-converting part, and a light-reflective layer disposed between the color-converting part and the color filter pattern to selectively reflect a light having a wavelength same as the wavelength of the incident light.
摘要:
A display device includes a substrate including a first substrate layer which is flexible, a second substrate layer which is flexible, and a conductive layer between the first substrate layer and the second substrate layer, a display panel including a plurality of transistors disposed on the substrate, and a sensing portion configured to measure a resistance of the conductive layer.
摘要:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
摘要:
A method of manufacturing a display apparatus includes: crystallizing portions of an amorphous silicon layer to form a preliminary semiconductor layer defining a channel region of a thin film transistor (“TFT”), a preliminary source and drain region disposed at opposing sides of the channel region, respectively, and an amorphous silicon layer region of the TFT, disposed between the channel region and the preliminary source or drain region; forming a source and drain region of the TFT at the opposing sides of the channel region, respectively, by doping the preliminary source and drain regions; and forming a source and drain electrode of the TFT respectively connected to the source and drain regions, where the semiconductor layer includes the amorphous silicon layer region connecting the channel region to at least one of the source and drain regions, and forming a display device connected to the TFT including the amorphous silicon layer region.
摘要:
A display device includes a substrate including a first substrate layer which is flexible, a second substrate layer which is flexible, and a conductive layer between the first substrate layer and the second substrate layer, a display panel including a plurality of transistors disposed on the substrate, and a sensing portion configured to measure a resistance of the conductive layer.
摘要:
Provided is a method of manufacturing a thin-film transistor substrate, the method includes forming a semiconductor pattern layer on a substrate. A first insulating film is formed on the semiconductor pattern layer. A metal pattern layer including a gate electrode and first and second alignment electrodes respectively spaced apart from two sides of the gate electrode is formed on the first insulating film. A cover layer covering the gate electrode is formed. The first and second alignment electrodes are removed. A first doping process is performed by doping the semiconductor pattern layer with a first impurity by using the cover layer as a mask. The cover layer is removed. A second doping process is performed by doping the semiconductor pattern layer with a second impurity having a lower impurity concentration than the first impurity by using the gate electrode as a mask.