Abstract:
A common mode filter includes a magnetic substrate in which ferrite particles having anisotropy and a planar structure are disposed to have a planar orientation.
Abstract:
There is provided a coil sheet including: a base sheet, and a coil unit disposed on the base sheet and including a central conductive part and a surface conductive part formed on surfaces of the central conductive part, wherein when a thickness of the surface conductive part formed on lateral surfaces of the central conductive part is ‘a’ and a thickness of the surface conductive part formed on an upper surface of the central conductive part is ‘b’, a
Abstract:
The present invention relates to a device for wireless communication and a method for wireless communication. The device for wireless communication, which consists of a front surface having a display unit for displaying a screen thereon, a back surface opposite to the front surface, and a plurality of side surfaces except the front surface and the back surface, includes: a plurality of antennas provided on one surface selected from the plurality of side surfaces; and a near field communication (NFC) module connected to at least one of the plurality of antennas to transceive data and improves the degree of freedom in designing the device for wireless communication while increasing a read range and a read rate of near field communication.
Abstract:
An array antenna includes an antenna substrate including a first ceramic member, an insertion member and a second ceramic member sequentially stacked, antenna pattern portions arranged on the antenna substrate in an array form, and shielding vias disposed inside the antenna substrate and extending in a thickness direction of the antenna substrate. The shielding vias are disposed in thickness areas of the antenna substrate corresponding to the antenna pattern portions.
Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate disposed to face the first ceramic substrate, a first patch disposed on one surface of the first ceramic substrate to operate as a feeding patch, a second patch disposed on the second ceramic substrate to operate as a radiation patch, at least one feed via penetrating through the first ceramic substrate in a thickness direction to provide a feed signal to the first patch, and a bonding pad disposed on a second surface of the first ceramic substrate opposite the first surface. A thickness of the first ceramic substrate is greater than a thickness of the second ceramic substrate.
Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate disposed to face the first ceramic substrate, a first patch disposed on the first ceramic substrate to operate as a feed patch, and a second patch disposed on the second ceramic substrate to operate as a radiation patch. One or both of the first ceramic substrate and the second ceramic substrate include a groove, and one or both of the first patch and the second patch is disposed in the groove of the respective first ceramic substrate and second ceramic substrate and protrudes from the groove.
Abstract:
An array antenna includes an antenna substrate including a first ceramic member, an insertion member and a second ceramic member sequentially stacked, antenna pattern portions arranged on the antenna substrate in an array form, and shielding vias disposed inside the antenna substrate and extending in a thickness direction of the antenna substrate. The shielding vias are disposed in thickness areas of the antenna substrate corresponding to the antenna pattern portions.
Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate disposed to oppose the first ceramic substrate, a first patch, disposed on the first ceramic substrate, configured to operate as a feed patch, a second patch, disposed on the second ceramic substrate, configured to operate as a radiation patch, an insertion member disposed between the first ceramic substrate and the second ceramic substrate, and a shielding layer disposed on a side surface of the insertion member.
Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate, a first patch antenna, a second patch antenna, and a feed via. The second ceramic substrate is disposed to oppose the first ceramic substrate. The first patch antenna includes a seed layer, disposed on a surface of the first ceramic substrate, and a plating layer disposed on the seed layer. The second patch antenna disposed on the second ceramic substrate. The feed via includes a seed layer, formed along an internal wall of a via hole penetrating through the first ceramic substrate in a thickness direction, and a conductive material surrounded by the seed layer in the via hole. The seed layer of the first patch antenna and the seed layer of the feed via are connected to each other.
Abstract:
A chip antenna comprises a first substrate, a second substrate overlapping the first substrate, a first patch, provided on a first surface of the first substrate a second patch, provided on the second substrate, at least one feed via penetrating through the first substrate in a thickness direction and configured to provide a feed signal to the first patch, and a bonding pad provided on a second surface of the first substrate. The first substrate comprises a dielectric substance and a magnetic substance.