Abstract:
A holographic display apparatus for providing an expanded viewing window includes a spatial filter configured to separate a plurality of holographic images generated by the hologram pattern displayed on the spatial light modulator from a plurality of lattice spots generated by a physical structure of the spatial light modulator. The spatial filter includes a plurality of color filters or a plurality of dichroic mirrors separating a first color image, a second color image, and a third color image from a first color lattice spot, a second color lattice spot, and a third color lattice spot.
Abstract:
A spatial light modulator providing an expanded viewing window and a holographic display apparatus including the spatial light modulator are provided. The spatial light modulator includes a mask member having a periodic pattern that is arranged to split an area of each of a plurality of pixels into at least two portions such that a space between lattice spots formed by a period structure of the spatial light modulator increases.
Abstract:
Provided is a multi-image display apparatus including a light source configured to emit light, a spatial light modulator configured to provide a first image by modulating the light emitted from the light source, and an optical system configured to transmit the first image provided by the spatial light modulator to a viewer, wherein the optical system is configured such that a travelling path of the first image provided by the spatial light modulator includes a first optical path in a first direction, a second optical path in a second direction orthogonal to the first direction, and a third optical path in a third direction orthogonal to the first direction and the second direction, respectively, and wherein the optical system is configured such that the first image and a second image provided from an optical path different from the travelling path of the first image are provided to the viewer.
Abstract:
Provided is a display apparatus including an image generator configured to time-sequentially generate a plurality of images by modulating light, and an optical system including a freeform surface that is configured to time-sequentially form a plurality of virtual images respectively corresponding to the plurality of images at different depths from a user's eye, wherein each error value among error values between the plurality of images and the plurality of virtual images respectively corresponding to the plurality of images on the freeform surface is less than or equal to a profile value of the freeform surface.
Abstract:
A display device including a meta surface is provided. The display device includes an image provider comprising a spatial light modulator configured to modulate light according to image information, wherein the image provider is configured to provide the light comprising the image information; an optical element configured to focus the light from the image provider; and a meta surface deflector positioned between the image provider and the optical element to deflect the light, and change a deflection direction of the light according to a polarization of the light so that a first position of the light of a first polarization focused by the optical element is different than a second position of the light of a second polarization orthogonal to the first polarization focused by the optical element.
Abstract:
Disclosed are a method and a system for processing a computer-generated hologram (CGH). The system for processing a CGH includes a CGH generation apparatus and a display apparatus. The CGH generation apparatus repeatedly performs a process of propagating object data from a first depth layer to a second depth layer, changing amplitude data of the object data to second predefined amplitude data, back-propagating the object data from the second depth layer to the first depth layer, and changing the amplitude data of the object data to first predefined amplitude data, and generates a CGH by using the object data.
Abstract:
A see-through type display device includes an image generation unit configured to emit image light, a light coupling unit configured to generate off-axis aberration in the image light, and a correction aberration generation unit configured to generate correction aberration, opposite to the off-axis aberration, in the image light emitted from the image generation unit, wherein the correction aberration generation unit is disposed on an optical path of the image light between the image generation unit and the light coupling unit, and wherein the light coupling unit is disposed off-axis relative to the image light.
Abstract:
An apparatus for processing an image includes: a first display of which an optical focal distance is a first distance; a second display of which an optical focal distance is a second distance; a processor configured to determine a first value of a first pixel of the first display and a second value of a second pixel of the second display according to a depth value of a first image to be output; and an image converging member configured to overlap the first pixel and the second pixel and output the first image corresponding to the depth value.
Abstract:
Provided is a projection display apparatus that tracks a user's eye with an eye tracker and displays a high-resolution image at a position of the user's eye. The projection display apparatus includes an eye tracker configured to track an eye of a user; a projector configured to project an image; and a controller configured to control the projector, based on a position of the eye of the user obtained from the eye tracker, to perform a first operation to project a first portion of the image at a first resolution onto a first region with respect to the position of the eye of the user, and to perform one of a second operation to project a second portion of the image at a second resolution lower than the first resolution onto a second region excluding the first region, and a third operation to refrain from projecting the image in the second region.
Abstract:
A holographic display apparatus capable of steering a location of a viewing window according to a location of an observer is disclosed. The holographic display apparatus includes a light source; a spatial light modulator configured to modulate incident light and thereby reproduce the holographic image; a spatial filter configured to transmit only the holographic image; an eye tracker configured to track a pupil location of an observer; and a controller configured to adjust locations of the light source and the spatial filter in response to a change in the pupil location of the observer received from the eye tracker. The controller is configured to move the light source and the spatial filter simultaneously in the same direction by the same distance.