Abstract:
A fractional Resource Block (RB) allocation method which enables resource allocation in a unit smaller than RB to improve the capacity of Voice over Internet Protocol (VoIP) in a Long Term Evolution (LTE) system is provided. The method includes generating modulation symbols streams by performing channel coding and modulation on transport blocks corresponding to first and second data to be transmitted to respective users, multiplexing the modulation symbols stream alternately in unit of two continuous modulation symbols, and transmitting the multiplexed modulation symbol stream as mapped to corresponding resource. A resource arrangement method allows different users to share the same resource without using a Space Domain Multiple Access (SDMA) and indicates fractional RB allocation.
Abstract:
In a wireless communication system, a control channel is required in order to use limited resources effectively. However, the control channel resource is part of the system overhead, and thus reduces the data channel resource used for data transmission. In the long term evolution (LTE) system based on OFDM, one sub frame the consists of fourteen OFDM symbols wherein a maximum of three OFDM symbols are used for the control channel resource and remaining eleven OFDM symbols are used for the data channel resource. Therefore, the quantity of energy that can be transmitted for the control channel resource is extremely limited compared to the data channel resource. For this reason, the coverage of the control channel becomes less than that of the data channel, and even if a user can successfully receive the data channel, reception failure of a control channel sometimes results in failure of data recovery. In the present invention, in order to expand the coverage of the control channel to at least the coverage of the data channel, the time resource of the transmission resource wherein the control channel is transmitted is expanded and allocated for sending and receiving the control channel. By way of methods for extending the time resource are provided a method wherein a plurality of sub frames are used to transmit one control channel, and a method wherein a part of a data channel is used for the control channel.
Abstract:
The present disclosure relates to a method and apparatus for receiving control information in a wireless communication system, and the method of receiving control information may include: receiving scheduling configuration information; receiving slot format information; determining formats of at least one slot based on scheduling configuration information and the slot format information; and receiving, based on a result of the determining, at least one of first type control information and second type control information.
Abstract:
Provided is a Physical Downlink Control Channel (PDCCH) transmission method of a base station for a mobile communication system based on an Orthogonal Frequency Division Multiple Access (OFDMA). The method includes acquiring downlink control information of a resource corresponding to a carrier among a plurality of carriers, identifying at least one Control Channel Element (CCE) index based on an indicator of the carrier among the plurality of carriers, generating a PDCCH for the downlink control information based on the identified CCE index, and transmitting the PDCCH through a predetermined carrier.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A method for a transmitter in a communication system, a method for a receiver, a transmitting apparatus, and a receiving apparatus are provided. The method includes identifying, by a transmitter, information bits in a first downlink control information (DCI) and information bits in a second DCI; appending, by the transmitter, one bit of value zero to the second DCI, if a number of the information bits in the second DCI is equal to a number of the information bits in the first DCI; appending, by the transmitter, one or more zero bits to the second DCI based on a payload size of the second DCI, if the number of the information bits in the second DCI belongs to one of ambiguous sizes; and transmitting, to a receiver, the second DCI, wherein a payload of the second DCI comprises the information bits in the second DCI and at least one zero padding bit appended to the second DCI, and wherein the one or more zero bits is appended to the second DCI until the payload size of the second DCI does not belong to one of the ambiguous sizes and the payload size of the second DCI is not equal to a payload size of the first DCI.
Abstract:
A method and apparatus are provided for transmitting and receiving control information in a wireless communication system supporting multi-cell transmission. A method includes receiving a first pilot signal from a first cell and a second pilot signal from a second cell; generating first control information indicating channel quality for the first cell and second control information indicating channel quality for the second cell, based on the first pilot signal and the second pilot signal, respectively; separately encoding the first control information and the second control information; separately power controlling the encoded first control information and the encoded second control information; transmitting, on the first cell, the power controlled, encoded first control information on a first control channel; and transmitting, on the first cell, the power controlled, encoded second control information on a second control channel.