Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A method, base station, and terminal employing time division duplex and carrier aggregation are disclosed. The method by the base station includes transmitting, to a terminal, scheduling information on a control channel of a first cell, and transmitting, to the terminal, data on a shared channel of a second cell based on the scheduling information. The scheduling information is transmitted in a first downlink subframe or a first subframe including downlink pilot time slot (DwPTS) based on first subframe configuration information of the first cell. The data is transmitted in a second downlink subframe or a second subframe including DwPTS corresponding to the first downlink subframe or the first subframe. The first subframe configuration information of the first cell is different from second subframe configuration information of the second cell.
Abstract:
A method and apparatus are provided for transmitting and receiving control information in a wireless communication system supporting multi-cell transmission. A method includes receiving a first pilot signal from a first cell and a second pilot signal from a second cell; generating first control information indicating channel quality for the first cell and second control information indicating channel quality for the second cell, based on the first pilot signal and the second pilot signal, respectively; separately encoding the first control information and the second control information; separately power controlling the encoded first control information and the encoded second control information; transmitting, on the first cell, the power controlled, encoded first control information on a first control channel; and transmitting, on the first cell, the power controlled, encoded second control information on a second control channel.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A method of transmitting channel state information. The method includes receiving, from a base station, channel measurement information comprising a plurality of antenna ports to be measured for a serving cell; measuring signals related to the plurality of antenna ports based on the channel measurement information; transmitting reference signal received power (RSRP) information for the plurality of antenna ports based on the measured signals; receiving, from the base station, in response to transmission of the RSRP information, channel state information (CSI) report instruction information for a candidate of a distributed antenna port set including at least one antenna port; measuring a channel state of the at least one antenna port in the candidate; and transmitting the measured channel state to the base station, wherein the candidate of the distributed antenna port set among the plurality of antenna ports is determined based on the RSRP information by the base station.
Abstract:
A method and an apparatus for transmitting Hybrid Automatic Repeat reQuest (HARQ) Acknowledgement/Negative Acknowledgement (ACK/NACK) are provided. The HARQ ACK/NACK transmission method includes receiving a Physical Downlink Shared Channel (PDSCH) in a subframe of a first cell, identifying an ACK subframe for transmitting HARQ ACK/NACK corresponding to the PDSCH, and transmitting the HARQ ACK/NACK in the identified ACK subframe of a second cell.
Abstract:
Methods and apparatuses are provided for Channel State Information (CSI) feedback. An Uplink (UL) grant is received from a Node B. Information included in the UL grant is identified. If the information is mapped to at least one DownLink (DL) Component Carrier (CC) based on configuration information relating to at least one set including the at least one DL CC, at least one CSI corresponding to the at least one DL CC is generated. The generated at least one CSI is transmitted to the Node B.
Abstract:
A semiconductor package manufacturing method is provided. The semiconductor package manufacturing method which uses a semiconductor package manufacturing apparatus including a chuck, a solder device configured to attach solder balls to a substrate provided on the chuck, and a scanning device configured to provide information about a shape of the substrate to the chuck, wherein the chuck comprises an adsorbing portion comprising a plurality of divided regions, each of which is configured to adsorb the substrate, and a driver configured to drive each of the plurality of divided regions, the semiconductor package manufacturing method comprising driving each of the plurality of divided regions to correspond to the shape of the substrate based on the information using the driver.
Abstract:
The present disclosure relates to a technique for radio link monitoring in a wireless communication system, and to operation procedures of the base station and user equipment and a method for radio link quality evaluation on the basis of the technique. In the method, the user equipment divides the downlink channel bandwidth into multiple frequency ranges, measures channel states for each frequency range, and evaluates the radio link quality based on channel state measurement results. Thereafter, the user equipment sends frequency range quality information to the base station, which may then utilize the same for downlink resource allocation. Hence, it is possible to solve the problem of the existing scheme wherein the user equipment enters the physical layer problem detection state or the radio link failure state although a frequency range usable for service provisioning is present within the downlink channel bandwidth.