Abstract:
A method of automatic planning of a view in a 3D image of a brain includes A method of automatic planning a view in a three-dimensional (3D) image of a brain includes selecting a plurality of axial working sections and a plurality of coronal working sections in the 3D scout image; constructing at least one mid-sagittal plane of the brain based on a set of axial reference lines and a set of coronal reference lines obtained from the selected plurality of axial working sections and the selected plurality of coronal working sections, respectively; detecting at least one landmark that is an anatomical point in the at least one mid-sagittal plane; creating a first reference line based on the at least one landmark detected in the at least one mid-sagittal plane; and planning a scan in an orientation based on the at least one mid-sagittal plane and the first reference line.
Abstract:
Provided is medical equipment and a technique for analyzing medical images. A method for automatically planning views in three-dimensional (3D) medical images includes: estimating a statistical model indicating positions of anatomical points, the statistical model having parameters calculated by minimizing energy of a loss function; training an anatomical point detector to detect the plurality of anatomical points by using the estimated statistical model; acquiring a 3D image having a region of interest; detecting a set of candidates of the anatomical points in the 3D image; searching the set of candidates for an optimal configuration corresponding to the plurality of anatomical points; and forming a view plane based on the optimal configuration found by the searching.
Abstract:
A method of acquiring a functional image whose artifacts due to a motion of an object are corrected includes acquiring functional image data of an object, acquiring structural image data of the object, acquiring motion information of the object based on the structural image data, correcting the functional image data based on the motion information related to motion of the object, and obtaining a functional image of the object.
Abstract:
A medical image providing apparatus includes: a display configured to display a first image including an object; and a processor. The processor is configured to: while the first image is displayed, control to output, on the display, a list including second medical images, wherein each of the second medical images is reconstructed by one of a plurality of medical images reconstruction techniques using image data of a first region in the first image; control to output, on the display, a manipulation menu item for manipulating at least one of the second medical images included in the list; based on a selection of the manipulation menu item corresponding to one of the second medical images, receive a manipulation input corresponding to the selected manipulation menu item; and update the second medical image corresponding to the selected manipulation menu item by applying the manipulation input.
Abstract:
A medical image providing apparatus includes: a display configured to display a first image including an object; and a processor configured to control to output a first list for selecting a medical image reconstruction technique to generate a second image based on a first region included in the first image being selected, receive a selection of the medical image reconstruction technique, and to control to overlay and display the second image generated by applying the selected medical image reconstruction technique on the first region of the first image.
Abstract:
Provided are a magnetic resonance (MR) image processing method and an MR image processing apparatus. The MR image processing apparatus includes: a signal transceiver that transmits or receives a signal to or from the heart; and an image processor that obtains a plurality of MR images of the heart by using the transmitted or received signal, determines at least one contour from each of the plurality of MR images; obtains first information about a first region formed by the at least one contour; and detects an apex MR image or a base MR image of the heart from among the plurality of MR images based on the first information, wherein a location of an apex or a base is automatically detected from a plurality of short-axis MR images of the heart.
Abstract:
Provided is a magnetic resonance imaging (MRI) apparatus including an acquisition unit configured to acquire an undersampled spectrum in a k-space and a reconstruction unit configured to generate a target image based on the undersampled spectrum, wherein the reconstruction unit includes: a first sub-reconstruction unit configured to perform initial reconstruction on data corresponding to unsampled positions in the k-space by using a Split Bregman algorithm or approximate sparse coding; a second sub-reconstruction unit configured to decompose the initially reconstructed spectrum in the k-space into multiple frequency bands to thereby generate a plurality of individual spectra and perform dictionary learning reconstruction on images respectively corresponding to the decomposed multiple frequency bands by alternating sparse approximation and reconstructing of measured frequencies; and an image generator configured to generate a target image by merging together the reconstructed images respectively corresponding to the multiple frequency bands.
Abstract:
A method of automatically registering landmarks in a 3-dimensional (3D) medical image includes obtaining a 3D image; determining a set of search points based on a statistical atlas attached to a bounding box corresponding to a part of the 3D image; extracting features of the determined set of search points; forming a set of candidates for a landmark based on the extracted features; filtering the candidates and outputting remaining candidates among the candidates based on the filtering; and outputting a final position of the landmark based on one of the remaining candidates.
Abstract:
A medical imaging apparatus and a method of processing a medical image. The medical imaging apparatus includes: an image processor configured to respectively determine color values for subregions of an organ based on at least two of first through third analysis values for each of the subregions. A display outputs display of a first map image obtained by respectively mapping the determined color values to the subregions and indicating the determined color values on the subregions. In the case where the image of the organ is a heart, the different parts of the heart correspond to respective subregions, and an indication of a probability of disease corresponds to a plurality of colors in a color map of the regions.
Abstract:
An apparatus for generating an diagnostic image of an object including a first image capturing unit to acquire a first diagnostic image, a second diagnostic image capturing unit that captures images by utilizing a different format of image capturing than the first image capturing unit in order to acquire a second diagnostic image that is different from the first diagnostic image. An image processor is configured to extract distinct points from at least one of the first diagnostic image and the second diagnostic image and perform image registration the first and second diagnostic images based on the extracted distinct points.