Abstract:
An all-solid secondary battery including: a cathode including a cathode active material layer; an anode including an anode active material layer; and a solid electrolyte layer including a sulfide solid electrolyte between the cathode active material layer and the anode active material layer, wherein an arithmetic mean roughness (Ra) of an interface between the cathode active material layer and the solid electrolyte layer is about 1 micrometer or less, and a relative density of the solid electrolyte layer is about 80% or more.
Abstract:
A lithium ion secondary battery including a cathode layer, an anode layer including an anode active material and a coating including a metal element, wherein the coating is disposed on the anode active material; and a solid electrolyte layer disposed between the cathode layer and the anode layer, wherein the coating has an electrochemical reaction potential with lithium that is greater than an electrochemical reaction potential of the anode active material with lithium.
Abstract:
A secondary battery including a first electrode structure including a first electrode current collector, the first electrode current collector including a first electrode layer forming region and a first electrode layer non-forming region on each surface of the first electrode current collector, a second electrode structure including a second electrode current collector, the second electrode current collector including a second electrode layer forming region and a second electrode layer non-forming region on each surface of the second electrode current collector, wherein the first and second electrode layer non-forming regions respectively include first and second electrode current collector tab coupling regions in an interior portion of each of the first and second electrode layer forming regions, and wherein the first electrode structure, the second electrode structure, and an electrolyte layer disposed between the first electrode structure and the second electrode structure are enclosed with an exterior body.
Abstract:
A positive electrode for an all-solid battery including a positive active material; a conductive material; and a binder, wherein the positive electrode further includes a cyano compound represented by Formula 1: M[A(CN)x] Formula 1 wherein in Formula 1, A is at least one selected from boron, gallium, aluminum, fluorine, phosphorus, and carbon, M is at least one alkali metal, and x is an integer of 1 to 4.
Abstract:
An all-solid secondary battery, including: a cathode; an anode; and a solid electrolyte layer disposed between the cathode and the anode, wherein the anode comprises an anode current collector; a first anode active material layer in contact with the anode current collector and comprising a first metal; a second anode active material layer disposed between the first anode active material layer and the solid electrolyte layer and comprising a carbon-containing active material; and a contact layer between the second anode active material layer and the solid electrolyte layer, and disposed such that the contact layer prevents contact between the second anode active material layer and the solid electrolyte layer, wherein the contact layer comprises a second metal, and has a thickness less than a thickness of the first anode active material layer.
Abstract:
An all-solid secondary battery including: a cathode including a cathode active material layer; an anode including an anode active material layer; and a solid electrolyte layer including a sulfide solid electrolyte between the cathode active material layer and the anode active material layer, wherein an arithmetic mean roughness (Ra) of an interface between the cathode active material layer and the solid electrolyte layer is about 1 micrometer or less, and a relative density of the solid electrolyte layer is about 80% or more.
Abstract:
An all-solid secondary battery, comprising: a cell comprising a positive electrode active material layer, a negative electrode active material comprising at least one of lithium metal and a lithium-containing alloy, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer, wherein a ratio of volume density to true density of the positive electrode active material layer is about 0.6 or greater, wherein a ratio of volume density to true density of the solid electrolyte layer is about 0.6 or greater, and wherein an average pressure applied to opposite sides of the solid electrolyte layer in a fully discharged state is greater than 0 megapascals and 7.5 megapascals or less.
Abstract:
A lithium secondary battery including: a positive electrode, a negative electrode, and a sulfide solid electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material particle and a coating film including an oxide including lithium (Li) and zirconium (Zr) on a surface of the positive active material particle.
Abstract:
An all-solid lithium ion secondary battery including a positive electrode including a positive active material particle and a solid electrolyte particle in contact with the positive active material particle, wherein the positive active material particle includes: a lithium cobalt oxide (LCO) particle; a first coating layer which includes nickel and is on at least a portion of a surface of the lithium cobalt oxide particle; and element M1, selected from B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, In, Sn, Sb, La, Ce, Pr, Eu, Tb, Hf, Ta, and Pb.
Abstract:
A lithium secondary battery wherein the cathode layer comprises a cathode active material particle having a coating layer that is on at least a portion of a surface of the cathode active material particle, and a solid electrolyte particle which is in contact with the coating layer, wherein an average particle diameter of the cathode active material secondary particle is in a range of about 3 micrometers to about 10 micrometers, wherein the coating layer is amorphous and contains at least one element selected from metal elements not including nickel, and semi-metal elements, and wherein a mole ratio of the at least one element of the coating layer and all of the metal elements, not including lithium, or semi-metal elements in the cathode active material particle is in a range of about 0.1 mole percent to about 10 mole percent.