Abstract:
A terminal synchronization method and apparatus for use in a wireless communication system are provided. A synchronization method includes configuring, at the terminal, a synchronization signal reference time depending on whether a synchronization signal is received in an initial observation period as long as at least two frames, monitoring to receive the synchronization signal in an alternation period of a transmission period and a reception period, the alternation period following the initial observation period, updating the reference time depending on whether the synchronization signal is received in the reception period, transmitting the synchronization signal at the updated reference time in the transmission period, and updating the reference time depending on whether the synchronization signal is received in a dedicated observation period following the alternation period. The synchronization apparatus and method are advantageous in that synchronization is obtained without assistance of a base station, an Access Point (AP), etc.
Abstract:
A method, in a communication system, carried out by a switch server comprising a programmable switch and one or more field programmable gate arrays (FPGAs) is provided. The method includes receiving information related to a flow table from an offloading server, receiving data packets, identifying a FPGA corresponding to the data packets, identifying whether the data packets match a flow entry of a flow table of the FPGA, in case that the data packets match the flow entry of the flow table, processing the data packets based on the flow entry and transmitting the processed data packet, and in case that the data packets do not match the entry of the flow table, providing the data packets to the offloading server.
Abstract:
The disclosure relates to a communication technique for convergence of an IoT technology and a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The disclosure can be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart cart or connected car, health care, digital education, retail business, security and safety-related service, etc.) on the basis of a 5G communication technology and an IoT-related technology. The disclosure defines a mobility method for a terminal residing in a system in which transmission/reception points (TPRs), supporting solely some protocols among entire access stratum protocols comprising PHY, MAC, RLC, PDCP, and RRC, coexist in a wireless communication system. Specifically, the disclosure defines a method for dynamically changing, depending on determination by a base station, a beam and a transmission/reception point to be used for transmitting information to or receiving information from a terminal through a method in which a system using multiple beams notifies, in advance, of a measurement reference signal transmitted using transmission/reception points of different networks, to allow a terminal to select a required reception beam from a corresponding resource and measure beam information of each transmission/reception point, or a terminal transmits measured information as feedback in which each transmission/reception point is specified. Accordingly, the disclosure can provide a criterion of rapid and highly precise determination for changing a beam and a transmission/reception point and thus prevent a terminal from needlessly measuring and reporting, so as to achieve an effect of reduction in the power consumption of the terminal and reduction of delay in change of a transmission/reception point.
Abstract:
The disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data transmission rate beyond-4th generation (4G) communication system such as long-term evolution (LTE). The disclosure relates to a method performed by a first network node in a communication system. The method includes the operations of receiving a packet from a user plane function (UPF), identifying a path of a data network on the basis of information included in the packet, and transmitting the packet through the path of the data network.
Abstract:
The present disclosure relates to a communication technique for combining a 5G communication system for supporting a higher data transmission rate than a 4G system with an IoT technology, and a system therefor. The present disclosure can be applied to 5G communication and IoT related technology-based intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security and safety related services, etc.). Disclosed is a technology for adding uplink data to a radio resource control (RRC) connection request message corresponding to an RA response message and transmitting the same to a base station when the terminal is in an RRC deactivated state in a method for transmitting, by a terminal, uplink data in a wireless communication system.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The present disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. Provided are a terminal operation method in a wireless communication system and a device for performing the same, the method according to an embodiment of the present invention comprises the steps of: monitoring a synchronization signal transmitted by a base station, on the basis of a synchronization resource section; receiving the synchronization signal on the basis of the synchronization signal monitoring; and accessing the base station on the basis of the synchronization acquired from the synchronization signal, wherein the synchronization resource section of the synchronization signal transmission cycle comprises a plurality of synchronization signal transmission time points.
Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data rate in comparison to the 4G communication system, such as long term evolution (LTE). A method for a terminal to establish synchronization with another terminal in a network supporting device-to-device (D2D) communication is provided. The method includes scanning, at the terminal, for synchronization signals from at least one base station, acquiring, when a synchronization signal is received from a base station, synchronization with the base station based on the synchronization signal, measuring power of the synchronization signal received from the base station, and transmitting, when data to be transmitted are generated in idle mode and the received signal power is less than a received signal power, a synchronization signal as a synchronization relaying terminal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. In addition, a method of a terminal in a wireless communication system, includes: receiving system information including first uplink waveform information for an initial access; transmitting a radio resource control (RRC) connection request message based on the first uplink waveform information; receiving an RRC connection response message including second uplink waveform information for uplink data transmission; and transmitting data based on the second uplink waveform.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Provided are a method and apparatus for uplink scheduling in a mobile communication system. The method of uplink scheduling for a user equipment (UE) in a mobile communication system may include identifying the amount of data stored in a buffer, generating a scheduling request (SR), and transmitting the SR to a base station (NB) on the basis of the identified data amount so that an uplink resource is to be allocated from the NB.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. According to the present disclosure, a terminal can perform uplink scheduling in accordance with a priority of a logical channel in a mobile communication system supporting various numerology types and TTI durations.