Abstract:
An apparatus and a method for feeding back data receiving status, applied to a system, are provided. The method includes sequencing, by a User Equipment (UE), downlink subframes for transmitting data with respect to each Component Carrier (CC), generating receiving status feedback information for the first X downlink subframes with respect to each CC according to the result of the sequencing, where X≤M, wherein M is the number of downlink subframes on each CC, and transmitting the receiving status feedback information generated with respect to each CC to a base station. Accordingly, the UE will not misinterpret the receiving status for the downlink subframes due to inconsistencies with the base station between transmitting and receiving feedback. This affects the Hybrid Automatic Repeat Request (HARQ) transmission, saves the uplink overheads occupied by the receiving status feedback information, and increases the uplink coverage area.
Abstract:
An apparatus and a method for feeding back data receiving status, applied to a system, are provided. The method includes sequencing, by a User Equipment (UE), downlink subframes for transmitting data with respect to each Component Carrier (CC), generating receiving status feedback information for the first X downlink subframes with respect to each CC according to the result of the sequencing, where X≦M, wherein M is the number of downlink subframes on each CC, and transmitting the receiving status feedback information generated with respect to each CC to a base station. Accordingly, the UE will not misinterpret the receiving status for the downlink subframes due to inconsistencies with the base station between transmitting and receiving feedback. This affects the Hybrid Automatic Repeat Request (HARQ) transmission, saves the uplink overheads occupied by the receiving status feedback information, and increases the uplink coverage area.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes determining a number of single-carrier frequency division multiple access (SC-FDMA) symbols in an uplink pilot time slot (UpPTS); receiving index information for a sounding reference signal (SRS); determining an SRS offset, based on the index information; and transmitting the SRS, based on the SRS offset. If the index information includes an integer from 0 to 9, and if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1. If the index information includes an integer from 0 to 9, and if the UpPTS includes one SC-FDMA symbol, a first symbol is indicated by the SRS offset 1.
Abstract:
A method and apparatus are provided for transmitting and receiving an SRS. The method includes determining a number of SC-FDMA symbols in an UpPTS; receiving index information for an SRS; determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms to 320 ms. If the index information includes an integer from 0 to 9, the SRS is transmitted twice, the SRS offset is based on an offset index table, and if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1, if the UpPTS includes one SC-FDMA symbol, the first symbol is indicated by the SRS offset 1.
Abstract:
A method and apparatus are provided for transmitting and receiving an SRS. The method includes determining a number of SC-FDMA symbols in an UpPTS; receiving index information for an SRS; determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms, and if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1, but if the UpPTS includes one SC-FDMA symbol, the first symbol is indicated by the SRS offset 1. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, and 320 ms.
Abstract:
Methods and apparatus are provided for path switching between an evolved Node B (eNB) and a Mobile Management Entity (MME). The eNB transmits a Path Switch Request message informing that a User Equipment (UE) has changed cells, to the MME. The Path Switch Request message includes an eNB UE S1AP ID, a Tracking Area Identifier (TAI), and cell Identifier (ID). The eNB UE S1AP ID uniquely identifies UE association over an S1 interface within the eNB. The eNB receives a Path Switch Request Acknowledge message including an MME UE S1AP ID and the eNB UE S1AP ID, from the MME. The MME UE S1AP ID uniquely identifies UE association over an S1 interface within the MME. The TAI corresponds to a cell in which the UE is located.
Abstract:
An apparatus and method are provided for allocating an uplink resource for a User Equipment (UE). The method includes receiving a downlink control channel and a downlink data channel corresponding to the downlink control channel from a base station; identifying a Physical Uplink Control CHannel (PUCCH) resource index for the downlink data channel based on a first Control Channel Element (CCE) of the downlink control channel; and transmitting a PUCCH in an uplink subframe based on the identified PUCCH resource index.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
Embodiments of the present invention provide a method for feeding back ACK/NACK for downlink data transmission in a radio communication system. The method is applied on a mobile terminal and includes the following steps: receiving downlink data, calculating, with respect to each Component Carrier (CC), a number of ACKs of ACK/NACK information of downlink data sub-frames of the CC, and feeding back numbers of ACKs of the ACK/NACK information of the downlink data sub-frames of CCs.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes receiving index information for an SRS; determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, and 320 ms. If the index information includes an integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms, and the SRS offset indicated by the index information is based on a predetermined table IndexOffset 00, 1 10, 2 21, 2 30, 3 50, 4 61, 4 72, 3 82, 4 9 3, 4.