Abstract:
A voltage-controlled vertical bi-directional monolithic switch, referenced with respect to the rear surface of the switch, formed from a lightly-doped N-type semiconductor substrate, in which the control structure includes, on the front surface side, a first P-type well in which is formed an N-type region, and a second P-type well in which is formed a MOS transistor, the first P-type well and the gate of the MOS transistor being connected to a control terminal, said N-type region being connected to a main terminal of the MOS transistor, and the second main terminal of the MOS transistor being connected to the rear surface voltage of the switch.
Abstract:
A component formed in a substrate of a first conductivity type, having two inputs and two outputs and: a first diode having its anode connected to a first input and having its cathode connected to a first output; a second diode having its anode connected to a second output and having its cathode connected to the first input; a one-way switch having its anode connected to the first output, its cathode being connected to the second output; and a third diode having its anode connected to the second output, its cathode being connected to the first output; the first, second, and third diodes being formed in a first portion of the substrate separated by a wall of the second conductivity type from a second substrate portion comprising the switch.
Abstract:
A vertical thyristor adapted to an HF control, including a cathode region in a P-type base well, a lightly-doped P-type layer next to the base well, a lightly-doped N-type region in the lightly-doped P-type layer, a Schottky contact on the lightly-doped N-type region connected to a control terminal, and a connection between the lightly-doped N-type region and the P-type base well.
Abstract:
A component formed in a substrate of a first conductivity type, having two inputs and two outputs and: a first diode having its anode connected to a first input and having its cathode connected to a first output; a second diode having its anode connected to a second output and having its cathode connected to the first input; a one-way switch having its anode connected to the first output, its cathode being connected to the second output; and a third diode having its anode connected to the second output, its cathode being connected to the first output; the first, second, and third diodes being formed in a first portion of the substrate separated by a wall of the second conductivity type from a second substrate portion comprising the switch.
Abstract:
A triac including on its front surface side an autonomous starting well of the first conductivity type containing a region of the second conductivity type arranged to divide it, in top view, into a first and a second well portion, the first portion being connected to a control terminal and the second portion being connected with said region to the main front surface terminal.
Abstract:
A circuit for generating a D.C. signal for controlling an A.C. switch referenced to a first potential, from a high-frequency signal referenced to a second potential, including: a first capacitive element connecting a first input terminal, intended to receive the high-frequency signal, to the cathode of a rectifying element having its anode connected to a first output terminal intended to be connected to a control terminal of the switch; and a second capacitive element connecting a second input terminal, intended to be connected to the second reference potential, to a second output terminal intended to be connected to the first reference potential, a second rectifying element connecting the cathode of the first rectifying element to the second output terminal.
Abstract:
A structure for starting a semiconductor component including a porous silicon layer in the upper surface of a semiconductor substrate. This porous silicon layer is contacted, on its upper surface side, by a metallization and, on its lower surface side, by a heavily-doped semiconductor region.
Abstract:
A monolithic interface circuit for providing a voltage, from a control circuit supplied by a supply voltage referenced to a reference voltage, to a terminal likely to be at a high voltage with respect to the reference voltage, comprising a high-voltage N-channel MOS transistor having its gate intended to receive a control signal referenced to the reference voltage and having its source intended to be connected to the reference voltage, and a high-voltage PNP transistor having its base connected to the drain of the MOS transistor, having its emitter intended to receive the supply voltage and having its collector intended to provide a voltage to the terminal likely to be at a high voltage.
Abstract:
An HF control bi-directional switch component of the type having its gate referenced to the rear surface formed in the front surface of a peripheral well of the component, including two independent gate regions intended to be respectively connected to terminals of a transformer having a midpoint connected to the rear surface terminal of the component.
Abstract:
A mesa-type bidirectional Shockley diode including a substrate of a first conductivity type; a layer of the second conductivity type on each side of the substrate; a region of the first conductivity type in each of the layers of the second conductivity type; a buried region of the first conductivity type under each of said regions of the first conductivity type, each buried region being complementary in projection with the other; and a groove arranged in the vicinity of the periphery of the component on each of its surfaces, the component portion external to the groove comprising, under the external portion of the upper and lower regions of the second conductivity type, regions of the first conductivity type of same doping profile as said buried regions.