摘要:
An apparatus for applying energy within an object includes an energy applying unit having an energy emitting element or outputting energy within the object and an energy storage unit locatable within the object and coupled to the energy emitting element. The apparatus further includes an electrical control line coupled to the energy applying unit for controlling the application of energy within the object by controlling transmission of energy from the energy storage unit to the energy emitting element.
摘要:
The invention relates to an apparatus for applying energy within an object. The apparatus comprises an energy applying unit (8, 9), which includes an energy emitting element (9) for outputting energy within the object and an energy storage unit (8) locatable within the object and coupled to the energy emitting element. The apparatus comprises further an electrical control line (12) coupled to the energy applying unit for controlling the application of energy within the object by controlling a transmission of energy from the energy storage unit to the energy emitting element. The invention relates further to a corresponding method and a corresponding computer program.
摘要:
A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
摘要:
A transmission cable including a transmission line, at least two electrically conductive line segments separated by a non-conductive gap, a bridging unit including at least one electrically conductive bridge segment capable of bridging the non-conductive gap, and a switching unit arranged to move the bridging unit and/or the transmission line to electrically connect the two line segments by closing the non-conductive gap using the bridge segment or to electrically disconnect the two line segments by opening the non-conductive gap.
摘要:
A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
摘要:
An interventional device (12) is configured to be positioned in a body and includes an electrically operable unit (E1, E2) configured to carry out an interaction with the body upon a receipt of electric power. The device further includes a sensor (2) configured for wirelessly receiving electromagnetic energy from a remote source. The sensor is configured as a resonant circuit (2a, 2b) which converts the received electromagnetic energy into the electric power. The electrically operable device may include a diagnostic and/or therapeutic module.
摘要:
A fiducial position marker (1) for use in a magnetic resonance (MR) imaging apparatus is disclosed for exciting and/or receiving MR signals in/from a local volume which at least substantially surrounds or adjoins the position marker, in order to determine and/or image from these MR signals the position of the position marker in an MR image of an examination object. Such a position marker (1) is especially used for determining and/or imaging a position of an interventional or non-interventional instrument to which the position marker may be attached, like a catheter, a surgical device, a biopsy needle, a pointer, a stent or another invasive or any non-invasive device in an MR image of an examination object. Further, a position marker system comprising such a position marker (1) and a circuit arrangement (5, 6, 6a, 8) for driving the position marker (1) for exciting MR signals and/or for processing MR signals received by the position marker is disclosed.
摘要:
A fiducial position marker (1) for use in a magnetic resonance (MR) imaging apparatus is disclosed for exciting and/or receiving MR signals in/from a local volume which at least substantially surrounds or adjoins the position marker, in order to determine and/or image from these MR signals the position of the position marker in an MR image of an examination object. Such a position marker (1) is especially used for determining and/or imaging a position of an interventional or non-interventional instrument to which the position marker may be attached, like a catheter, a surgical device, a biopsy needle, a pointer, a stent or another invasive or any non-invasive device in an MR image of an examination object. Further, a position marker system comprising such a position marker (1) and a circuit arrangement (5, 6, 6a, 8) for driving the position marker (1) for exciting MR signals and/or for processing MR signals received by the position marker is disclosed.
摘要:
The invention relates to a dynamic nuclear polarization apparatus (116) for continuous provision of hyperpolarized samples (114) comprising dynamically nuclear polarized nuclear spins, the apparatus (116) comprising a polarization region (106) for polarization of said nuclear spins resulting in said hyperpolarized samples, wherein the apparatus (116) further comprises: a cryostat (102) for cooling the samples (114) in the polarization region (106), a magnet (100) for providing a magnetic field to the cooled samples in the polarization region (106), a radiation source (112) for concurrently to the magnetic field provision providing a nuclear polarizing radiation to the polarization region (106) for receiving the hyperpolarized samples, a sample transport system (104) for continuously receiving unpolarized samples (114), transporting the unpolarized samples to the polarization region (106) for nuclear spin polarization and providing the resulting hyperpolarized samples (114).
摘要:
The invention relates to a magnetic resonance imaging system (1) comprising: a main magnet for generating a uniform, steady magnetic field within an examination volume (21), an RF waveguide (19) for guiding travelling RF waves along an axis of the examination volume (21) in at least one travelling mode of the RF waveguide (19), at least one RF antenna (9) for transmitting RF pulses to and/or receiving MR signals from a body (10) of a patient positioned in the examination volume (21), wherein the RF antenna (9) is configured to couple to the at least one travelling mode of the RF waveguide (19), and wherein the RF antenna (9) is located on the imaging system such that the examination volume (21) is freely accessible, a control unit (15) for controlling the temporal succession of RF pulses, and a reconstruction unit (17) for reconstructing an MR image from the received MR signals. Further, the invention relates to an RF antenna (9) for an MR imaging system (1), wherein the RF antenna (9) is formed by an electrically conductive plate (22) comprising at least one recess (23).