摘要:
A vehicular power system, a vehicle and a method of providing auxiliary power to a vehicle using an auxiliary power unit that uses a molten metal anode solid oxide fuel cell rather than an internal combustion engine. The auxiliary power unit includes a container with numerous fuel cells disposed within it such that when the metal anode is heated, the metal converts to a molten state that can be electrochemically cycled between oxidized and reduced states by oxygen and a fuel present in the molten metal, respectively. The auxiliary power unit further includes a furnace that selectively provides heat to the fuel cells in order to place the anode into its molten metal state. Seals may provide fluid isolation between the molten metal within the container and the ambient environment.
摘要:
Embodiments of methods for capturing high-purity CO2 in a hydrocarbon facility and related systems are provided. The method comprises operating a hydrogen plant to generate a high-purity hydrogen stream and a CO2 rich stream with a CO2 concentration above 30%; introducing the high-purity hydrogen stream into an anode of a molten carbonate fuel cell; introducing the CO2 rich stream and O2 into a cathode of the molten carbonate fuel cell; reacting CO2 and O2 within the cathode to produce carbonate and a cathode exhaust stream from a cathode outlet; reacting carbonate from the cathode with H2 within the anode to produce electricity and an anode exhaust stream from an anode outlet, the anode exhaust stream comprising CO2 and H2O; separating the CO2 in the anode exhaust stream in one or more separators to form a pure CO2 stream and a H2O stream; and collecting the pure CO2 stream.
摘要:
Embodiments of a self-sustainable solid oxide fuel cell (SOFC) system for powering a gas well comprise a first SOFC comprising a first cathode, a first anode, and a first solid electrolyte; a second SOFC comprising a second cathode, a second anode, and a second solid electrolyte; SO2 removal equipment; a combustion circuit comprising a combustor and a circulating heat carrier in thermal connection with the combustor, the first SOFC, and the second SOFC; and one or more external electric circuits. The first anode comprises a first oxidation region configured to produce SO2 and electrons. The second anode comprises a second oxidation region configured to electrochemically oxidize CH4 to produce syngas and electrons and electrochemically oxidize H2 to produce H2O and electrons. The external electric circuits are configured to generate power from the electrons produced in both the first SOFC and the second SOFC.
摘要:
A solar system is provided comprising a light receiving surface, a condensation subassembly, a water collection subassembly, and a cleaning subassembly. The expansion chamber of the condensation subassembly is thermally coupled to the light receiving surface and thermally insulated from the ambient such that expansion of compressed air in the expansion chamber, as controlled by the compressed air expansion valve, encourages humidity condensation on the light receiving surface by reducing the temperature of the light receiving surface. The water collection subassembly comprises a water collection vessel and water direction hardware positioned to direct condensed water on the light receiving surface to the water collection vessel. The cleaning subassembly comprises a water dispensing unit positioned to dispense water from the water collection vessel over the light receiving surface of the solar system.
摘要:
Embodiments of a molten metal anode solid oxide fuel cell (MMA-SOFC) system comprise a first MMA-SOFC and a second MMA-SOFC, a fuel contactor integral with the first MMA-SOFC or in fluid communication with the first MMA-SOFC, a molten metal conduit configured to deliver molten metal from a first molten metal anode to a second molten metal anode, and one or more external electric circuits, wherein a first molten metal anode is configured to oxidize molten metal to produce metal oxides and electrons, the fuel contactor is configured to reduce the metal oxides and produce metals and metal sulfides in the molten metal upon reaction with sulfur-containing fuel. The second molten metal anode is configured to oxidize the metal sulfides in the metal sulfides-containing molten metal to produce metals and electrons, and the external electric circuits are configured to generate power from the electrons produced in the first and second MMA-SOFCs.
摘要:
Methods for recovering organic heteroatom compounds from a hydrocarbon feedstock include feeding into a contactor a hydrocarbon feedstock and an aqueous solvent to form an extraction mixture of the aqueous solvent with the hydrocarbon feedstock. The hydrocarbon feedstock includes a hydrocarbon and an organic heteroatom compound. The aqueous solvent includes an ionic liquid formed from pressurized carbon dioxide and water. A pressure and temperature of the extraction mixture may be established that together tune the aqueous solvent to selectively form a solvent complex with the at least one organic heteroatom compound. Then, the solvent complex is extracted to a recovery vessel from the extraction mixture in the contactor. By adjustment of a recovery temperature of the recovery vessel, a recovery pressure of the recovery vessel, or both, the solvent complex decomposes into carbon dioxide and the organic heteroatom compound. The organic heteroatom compound is then recovered from the recovery vessel.
摘要:
Embodiments of methods for capturing high-purity CO2 in a hydrocarbon facility and related systems are provided. The method comprises operating a hydrogen plant to generate a high-purity hydrogen stream and a CO2 rich stream with a CO2 concentration above 30%; introducing the high-purity hydrogen stream into an anode of a molten carbonate fuel cell; introducing the CO2 rich stream and O2 into a cathode of the molten carbonate fuel cell; reacting CO2 and O2 within the cathode to produce carbonate and a cathode exhaust stream from a cathode outlet; reacting carbonate from the cathode with H2 within the anode to produce electricity and an anode exhaust stream from an anode outlet, the anode exhaust stream comprising CO2 and H2O; separating the CO2 in the anode exhaust stream in one or more separators to form a pure CO2 stream and a H2O stream; and collecting the pure CO2 stream.
摘要:
Embodiments of methods for capturing high-purity CO2 in a hydrocarbon facility and related systems are provided. The method comprises operating a hydrogen plant to generate a high-purity hydrogen stream and a CO2 rich stream with a CO2 concentration above 30%; introducing the high-purity hydrogen stream into an anode of a molten carbonate fuel cell; introducing the CO2 rich stream and O2 into a cathode of the molten carbonate fuel cell; reacting CO2 and O2 within the cathode to produce carbonate and a cathode exhaust stream from a cathode outlet; reacting carbonate from the cathode with H2 within the anode to produce electricity and an anode exhaust stream from an anode outlet, the anode exhaust stream comprising CO2 and H2O; separating the CO2 in the anode exhaust stream in one or more separators to form a pure CO2 stream and a H2O stream; and collecting the pure CO2 stream.
摘要:
A hybrid flow redox battery system includes an electrochemical cell with an ion-exchange membrane, an anode, and a cathode, an anolyte tank, a catholyte tank, one or more tank separators, a plurality of electrolyte pathways, one or more turbines, and one or more power generation circuits. The anolyte tank includes a lower anolyte opening positioned below an upper anolyte opening. The catholyte tank includes a lower catholyte opening positioned below an upper catholyte opening. The electrolyte pathways extend between the upper and lower anolyte openings and the anode and the upper and lower catholyte openings and the cathode. The turbines are fluidly coupled to the electrolyte pathways. The tank separators are positioned within one or both of the anolyte tank and the catholyte tank and are translatable in a downward direction to induce electrolyte flow from the lower anolyte and catholyte openings, through the turbines to hydroelectrically generate power.
摘要:
A vehicular power system, a vehicle and a method of providing auxiliary power to a vehicle using an auxiliary power unit that uses a molten metal anode solid oxide fuel cell rather than an internal combustion engine. The auxiliary power unit includes a container with numerous fuel cells disposed within it such that when the metal anode is heated, the metal converts to a molten state that can be electrochemically cycled between oxidized and reduced states by oxygen and a fuel present in the molten metal, respectively. The auxiliary power unit further includes a furnace that selectively provides heat to the fuel cells in order to place the anode into its molten metal state. Seals may provide fluid isolation between the molten metal within the container and the ambient environment.