Abstract:
Disclosed is a cooling system comprising a cooling circuit with a deaeration device arranged in the cooling circuit for separation of air bubbles from coolant circulating therein. The deaeration device comprises a deaeration chamber having a coolant inlet connected to a feed pipe of the cooling circuit, a first coolant outlet connected to a coolant pump of the cooling circuit, and a second coolant outlet connected to an expansion tank via a static line. The deaeration chamber has a larger cross-sectional dimension than said feed pipe. The second coolant outlet is located in such a position in relation to the coolant inlet and the first coolant outlet that the coolant flow in the deaeration chamber between the coolant inlet and the first coolant outlet will move migrating air bubbles in the longitudinal direction of the deaeration chamber towards the second coolant outlet.
Abstract:
A cooling system configured to cool a combustion engine (2) and at least one further object (18) in a vehicle (1) includes a main radiator (8), a main radiator bypass line (9) directing coolant past the main radiator (8), a first valve device (6) receiving coolant from a coolant line (5) and directing it to the main radiator line (7) and the main radiator bypass line (9), an auxiliary circuit (14) directing coolant to the further object (13, 28), a main radiator outlet line (7b) directing at least a part of the coolant leaving the main radiator (8) to the auxiliary circuit (14), and a second valve device (20) receiving coolant from the main radiator (11) and/or the main radiator bypass line (9) and directing it to the auxiliary circuit (14) and/or the engine inlet line (3). The auxiliary circuit (14) includes an auxiliary radiator (15) and an auxiliary radiator bypass line (17) directing coolant past the auxiliary radiator (15) which are arranged in an upstream position of the further object (13, 28) in the auxiliary circuit (14) and a bypass valve (18) configured to control the coolant flow through the auxiliary radiator bypass line (17).
Abstract:
A cooling system includes a first circuit (A) configured to cool a combustion engine (2) and a second circuit (B) configured to cool a condenser (19) in a WHR system. The second circuit (B) has a second radiator (16), a first inlet opening (B1i) at which the second circuit (B) receives a coolant from a first position of the first circuit (A), a condenser inlet line (18) configured to direct coolant to the condenser (19) and an outlet opening (Bo) at which the coolant is directed back to the first circuit (A). The second circuit (B) further has a second radiator bypass line (14) directing coolant past the second radiator (16), and a second valve device (13, 13′) configured to distribute the coolant between the second radiator (16) and the second radiator bypass line (14) such that a coolant mixture is received in the condenser inlet line (18) which is able to cool the working medium in the condenser (19) to a desired condensation temperature.
Abstract:
The present invention relates an arrangement for an exhaust system of a combustion engine. The arrangement comprises at least one exhaust treatment component arranged in the exhaust system, a first boiler of a Waste Heat Recovery System (WHR) system arranged in an upstream position of the exhaust treatment component in the exhaust system, a second boiler of the WHR system arranged in a downstream position of the exhaust treatment component in the exhaust system and a working medium circuit circulating a working medium in the WHR system. The working medium circuit comprises a first conduit directing the working medium to the first boiler, a first bypass conduit directing the working medium past the first boiler, and a first valve device configured to regulate the working medium flow through the first conduit and the first bypass conduit.
Abstract:
A cooling system for a combustion engine and a WHR-system in a vehicle (1) includes a first line (23) directing coolant at a first temperature (T1) to a condenser (18) of the WHR system, a second line (24) directing coolant at a second temperature (T2) to the condenser (18), a valve arrangement (25, 26, 29) by which the flow rate of the coolant in at least one of the lines (23, 24) is adjustable and a control unit (20) configured to control the valve arrangement (25, 26, 29) such that the coolant directed to the condenser (18) from the lines (23, 24) has a temperature and a flow rate which results in a cooling of the working medium in the condenser (18) to a predetermined condensation temperature/pressure at the actual operating condition.
Abstract:
Disclosed is a cooler arrangement for cooling a cylinder of a combustion engine. The cylinder has a cylinder head and a cylinder liner. The arrangement comprises a cooling circuit with a first flow passage which leads coolant through a lower part of the cylinder head, a second flow passage which leads coolant through an upper part of the cylinder head, and a third flow passage which leads coolant through an upper part of the cylinder liner. The cooling circuit is adapted to initially leading coolant through the first flow passage before it is led in parallel through the second flow passage and the third flow passage.