Abstract:
The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include an incremental quantities subsystem configured to calculate an incremental current quantity and an incremental voltage quantity based on the plurality of representations. A fault detection subsystem may be configured to determine a fault type based on the incremental current quantity and the incremental voltage quantity, to select an applicable loop quantity, and to declare a fault based on the applicable loop quantity, the incremental voltage quantity, and the incremental current quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
Abstract:
The present disclosure relates to determining locations of low-energy events on power lines. For example, an IED may receiving an input signal indicating a local electrical condition of a power line. The IED may detect traveling waves on the power line based on the local electrical condition. The IED may detect traveling waves on the power line based on the local and remote electrical conditions. The IED may determine that the traveling waves are associated with a low-energy event. The IED may determine the location of the low-energy event on the power line based at least in part on the traveling waves.
Abstract:
A testing system for imposing a traveling wave signal on an electric power system signal for testing a fault detector is disclosed herein. The testing system may be configured to simulate a fault at a simulated location by controlling the timing of the traveling wave signal. The testing system may be configured to impose multiple traveling wave signals to test the accuracy of the fault location determined by the fault detector. The testing system may be configured with multiple testing apparatuses using time coordination and referenced to an intended fault instant. The testing system may be configured to supply traveling waves of different polarities to test for different fault type detection.
Abstract:
The present disclosure pertains to detection of a broken conductor in an electric power system. In one embodiment, a broken conductor detector may be configured to be mounted to an electrical conductor and may comprise a communication subsystem configured to transmit a signal configured to indicate that the conductor is broken. A sensor may determine an operating vector. A processing subsystem may be configured to receive the operating vector from the sensor and to identify when the operating vector is outside of a range defined by a rest vector and a threshold value. In certain embodiments, the threshold may comprise a three-dimensional sphere. The processing subsystem may determine that the conductor is broken based on the operating vector remaining outside of the range for a period of time determined by the timer subsystem. A signal may be transmitted by the communication subsystem to indicate that the conductor is broken.
Abstract:
Disclosed herein are intelligent electronic devices configured for monitoring an electric power delivery system and for determining a plurality of configuration settings based on measurements from the electric power delivery system. An IED may identify a configuration event, obtain a plurality of electrical parameters associated with the configuration event, determine a plurality of configuration parameters from the electrical parameters, determine a plurality of configuration settings based on the configuration parameters, and apply the settings to the IED. The IED may also be configured to initiate the configuration event by opening a single pole of a multi-phase power line.
Abstract:
The present disclosure relates to detection of faults in an electric power system. In one embodiment, a time-domain traveling wave directional subsystem is configured to receive a plurality of current traveling wave and a plurality of voltage traveling wave time-domain representations based on electrical conditions in the electric power delivery system. The plurality of current and voltage traveling wave time-domain representations may be compared to respective minimum thresholds. An integral may be generated based on a product of the plurality of current and voltage traveling wave time-domain representations when the current and voltage traveling wave time-domain representations exceed the minimum thresholds. A sign of the integral may reflect whether the fault is in the forward or reverse direction. A fault detector subsystem configured to declare the fault when the sign reflects that the fault is in the forward direction and the integral exceeds a security margin.
Abstract:
The present disclosure relates to detection of faults in an electric power system. In one embodiment, an incremental quantities subsystem is configured to determine a forward torque, an operating torque, and a reverse torque based on the plurality of time-domain representations of electrical conditions. Each of the forward torque, the operating torque, and the reverse torque may be integrated over an interval. A fault detection subsystem may determine an occurrence of the fault based on a comparison of the operating torque to the forward torque and the reverse torque. Further, a direction of the fault may be determined based on the comparison of the forward torque, the operating torque, and the reverse torque. A fault may be declared based on the comparison and the direction. A protective action subsystem may implement a protective action based on the declaration of the fault.
Abstract:
The present disclosure relates to detection of faults in an electric power system. In one embodiment, an incremental quantities subsystem may be configured to calculate a plurality of values of an operating quantity based on the plurality of time-domain representations of electrical conditions. The incremental quantities subsystem may also calculate a plurality of values of a restraining quantity based on the plurality of time-domain representations of electrical conditions. An interval during which the calculated operating quantity exceeds the calculated restraining quantity may be determined. A fault detector subsystem may be configured to declare a fault based on the calculated operating quantity exceeding the calculated restraining quantity by a security margin. A protective action subsystem configured to implement a protective action based on the declaration of the fault.
Abstract:
The present disclosure pertains to systems and methods for obtaining and processing high-frequency electric power system measurements for control and monitoring of an electric power system. High-frequency measurements may be used to detect traveling waves and/or to detect faults in the electric power system. In various embodiments, a processing device may receive high-frequency electric power system measurements from each of a local location and a remote location and may process the high-frequency electric power system measurements to identify and locate a fault. The occurrence of and location of a fault and may be used to implement protective actions to remediate identified faults.
Abstract:
Fault location using traveling waves in an electric power delivery system according to the embodiments herein uses line parameters that are adjusted using traveling wave reflections from known discontinuities in the electric power delivery system. The arrival times of a traveling wave and a reflection of the traveling wave from a known discontinuity may be used to adjust parameters of the electric power delivery system such as, for example, line length. The adjusted parameter can then be used to more accurately calculate the location of the fault using the traveling waves.