Abstract:
Using a high sample rate dPES, together with pulsed heater and lock-in technique, to improve dPES SNR for contact detection between the head and media surface. Steps of powering a transducing head actuator with pulsed input signal at a select data track offset from a previously-written to data track of the storage medium, where the pulsed input signal has select amplitude and duty cycle to simulate a response signal, and further locking in an amplitude with respect to the heater frequency, can lead to a determination of level of heater power for initiating contact between the transducing head and the storage medium.
Abstract:
In certain embodiments, a head-suspension assembly includes a resonator attached to either a head or gimbal. The resonator is configured to resonate at a predefined resonant frequency. In certain embodiments, disc drives includes a recording medium, a head-suspension assembly, and a resonator. The resonator is attached to either a head or gimbal of the head-suspension assembly. The resonator is configured to resonate at a predefined resonant frequency.
Abstract:
Using a high sample rate dPES, together with pulsed heater and lock-in technique, to improve dPES SNR for contact detection between the head and media surface. Steps of powering a transducing head actuator with pulsed input signal at a select data track offset from a previously-written to data track of the storage medium, where the pulsed input signal has select amplitude and duty cycle to simulate a response signal, and further locking in an amplitude with respect to the heater frequency, can lead to a determination of level of heater power for initiating contact between the transducing head and the storage medium.
Abstract:
A heat-assisted magnetic recording device is disposed in a hermetically sealed enclosure. The device includes a slider comprising a reader, a writer, and an optical waveguide configured to couple light from a light source to a near-field transducer situated at or near an air bearing surface of the slider. The near-field transducer comprises an enlarged portion and a peg extending from the enlarged portion in a direction of the air bearing surface. A fill gas is provided within the enclosure. The fill gas comprises a mixture of a low-density, inert gas and at least one gas that oxidizes carbon, where the total carbon oxidizing gas concentration of the fill gas is 3-50% by volume. In certain embodiments, the fill gas comprises a hydrogen concentration sufficient to retard oxidation of the peg when the peg is at an operating temperature associated with write operations.
Abstract:
A magnetic recording head comprises a transducer, a heater, a writer and a laser. The transducer is configured to write to a magnetic recording medium during a write operation. The heater, writer and laser are configured to affect a protrusion of the transducer. The heater is calibrated to produce a pre-write heater power to obtain a target pre-write clearance for a write operation through use of a clearance-heater power curve. The curve is generated by measuring a clearance between the transducer and the medium as the heater is cycled from zero to a contact power.
Abstract:
An apparatus comprises a heat-assisted magnetic recording (HAMR) head, a sensor, and a controller. The HAMR head is configured to interact with a magnetic storage medium. The sensor is configured to produce a signal indicating the occurrence of head-medium contact. The controller is configured to receive the signal and concurrently determine from the signal if the occurrence of head-medium contact is caused by a first contact detection parameter, a second contact detection parameter, or both the first and second contact detection parameters.
Abstract:
The application discloses a sensor device to measure friction force at a head-media interface. As disclosed, the sensor device has a transducer element oriented to provide an electrical output responsive to force or strain imparted to the transducer element along an in-plane axis. Sensor circuitry is coupled to the transducer element to process the electrical output to provide an output measure of friction force. In illustrated embodiments, the head includes an actuator element which is powered on/off at an on/off frequency to cyclically protrude a localized portion of the head. The on/off frequency of the actuator is used by the sensor circuitry to detect excitation of the sensor device due to friction force at the head-media interface.
Abstract:
A temperature sensor of a head transducer measures temperature near or at the close point. The measured temperature varies in response to changes in spacing between the head transducer and a magnetic recording medium. A detector is coupled to the temperature sensor and is configured to detect a change in a DC component of the measured temperature indicative of onset of contact between the head transducer and the medium. Another head transducer configuration includes a sensor having a sensing element with a high temperature coefficient of resistance to interact with asperities of the medium. Electrically conductive leads are connected to the sensing element and have a low temperature coefficient of resistance relative to that of the sensing element, such thermally induced resistance changes in the leads have a negligible effect on a response of the sensing element to contact with the asperities.
Abstract:
A test involves iterations over a series of laser powers of a heat-assisted read/write head. The iterations involve writing to a recording medium at the selected laser power for a sufficient duration to ensure thermal equilibrium of the read/write head at an end of the write. A clearance-control heater of the read/write head is transitioned from a pre-write power before a start of the write to a steady-state write power. The iterations further involve measuring a temperature of the read/write head during the write and adjusting the steady-state write power to achieve a predefined difference between the temperature at the start of the write and the end of the write. The adjusted steady state write power is stored for each iteration. A write-induced protrusion is determined based on the iterations and used for calibration of the read/write head.
Abstract:
Method and apparatus for controlling the fly height of a transducer. In some embodiments, a data pattern is written to a rotating data recording surface using a transducer having a write element, a read element and a thermal assist energy source. A first protrusion distance for the read element induced by operation of the energy source is determined responsive to first and second readback amplitudes obtained from the data pattern using different first and second power levels applied to the energy source. A second protrusion distance for the write element induced by the energy source is determined responsive to the first protrusion distance.