Abstract:
In accordance with one embodiment, a multi-reader can be manufactured so as to be able to read from multiple regions of a storage device contemporaneously during operation. Such a device can be configured, for example, by forming a first wall; forming a second wall; and utilizing the first wall and the second wall to form two adjacent reader stacks.
Abstract:
A structure includes a channel waveguide and a pocket adjacent to an input facet of the channel waveguide. A laser having an output facet is positioned in the pocket. The structure includes a stop on either the laser or a wall of the pocket. The stop is positioned at an interface between the laser and the wall of the pocket such that the output facet of the laser and the input facet of the waveguide are separated by a gap.
Abstract:
A read head includes a bottom shield configured as a bottom electrical contact. A bottom reader stack is disposed on and electrically coupled to the bottom shield. A middle electrical contact is electrically coupled to a top layer of the bottom reader stack. A top reader stack is disposed on the bottom reader stack. A bottom layer of the top reader stack electrically coupled to the middle electrical contact. A top shield is configured as a top electrical contact. The top shield is disposed on and electrically coupled to the top reader stack.
Abstract:
An apparatus and associated method may be used to provide a data sensing element capable of detecting changes in magnetic states. Various embodiments of the present invention are generally directed to a magnetically responsive lamination of layers and [a] means for generating a high magnetic moment region proximal to an air bearing surface (ABS) and a low magnetic moment region proximal to a hard magnet.
Abstract:
A lateral spin valve reader includes a detector located proximate to a bearing surface of the reader, a spin injector located away from the bearing surface, and a channel layer that substantially extends from the detector to the spin injector. The channel layer and the detector are substantially in a same plane.
Abstract:
A structure includes a channel waveguide and a pocket adjacent to an input facet of the channel waveguide. A laser having an output facet is positioned in the pocket. The structure includes a stop on either the laser or a wall of the pocket. The stop is positioned at an interface between the laser and the wall of the pocket such that the output facet of the laser and the input facet of the waveguide are separated by a gap.
Abstract:
Tolerances for manufacturing reader structures for transducer heads continue to grow smaller and storage density in corresponding storage media increases. Reader stop layers may be utilized during manufacturing of reader structures to protect various layers of the reader structure from recession and/or scratches while processing other non-protected layers of the reader structure. For example, the stop layer may have a very low polish rate during mechanical or chemical-mechanical polishing. Surrounding areas may be significantly polished while a structure protected by a stop layer with a very low polish rate is substantially unaffected. The stop layer may then be removed via etching, for example, after the mechanical or chemical-mechanical polishing is completed.
Abstract:
A read head includes a bottom shield configured as a bottom electrical contact. A bottom reader stack is disposed on and electrically coupled to the bottom shield. A middle electrical contact is electrically coupled to a top layer of the bottom reader stack. A top reader stack is disposed on the bottom reader stack. A bottom layer of the top reader stack electrically coupled to the middle electrical contact. A top shield is configured as a top electrical contact. The top shield is disposed on and electrically coupled to the top reader stack.
Abstract:
Tolerances for manufacturing reader structures for transducer heads continue to grow smaller and storage density in corresponding storage media increases. Reader stop layers may be utilized during manufacturing of reader structures to protect various layers of the reader structure from recession and/or scratches while processing other non-protected layers of the reader structure. For example, the stop layer may have a very low polish rate during mechanical or chemical-mechanical polishing. Surrounding areas may be significantly polished while a structure protected by a stop layer with a very low polish rate is substantially unaffected. The stop layer may then be removed via etching, for example, after the mechanical or chemical-mechanical polishing is completed.